Advertisement

Parallelizing Metaheuristics for Optimal Design of Multiproduct Batch Plants on GPU

  • Andrey BorisenkoEmail author
  • Sergei Gorlatch
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10421)

Abstract

We propose a metaheuristics-based approach to the optimal design of multi-product batch plants, with a particular application example of chemical-engineering systems. Our hybrid approach combines two metaheuristics: Ant Colony Optimization (ACO) and Simulated Annealing (SA). We develop a sequential implementation of the proposed method and we parallelize it on Graphics Processing Units (GPU) using the CUDA programming environment. We experimentally demonstrate that the results of our hybrid metaheuristic approach (ACO+SA) are very near to the global optimal solutions, but they are produced much faster than using the deterministic Branch-and-Bound approach.

Keywords

Hybrid metaheuristics Ant Colony Optimization Simulated Annealing GPU computing CUDA Parallel metaheuristics Combinatorial optimization Multiproduct batch plant design 

Notes

Acknowledgement

This work was supported by the DAAD (German Academic Exchange Service) and by the Ministry of Education and Science of the Russian Federation under the “Mikhail Lomonosov II”-Programme, as well as by the German Research Agency (DFG) in the framework of the Cluster of Excellence CiM at the University of Muenster. We also thank the Nvidia Corp. for the donated hardware used in our experiments.

References

  1. 1.
    Aarts, E., Korst, J., Michiels, W.: Simulated annealing. In: Search Methodologies, pp. 265–285. Springer Science & Business Media, Heidelberg (2014)Google Scholar
  2. 2.
    Agarwal, K., Sinha, A., Hima Bindu, M.: A novel hybrid approach to N-Queen problem. In: Wyld, D., Zizka, J., Nagamalai, D. (eds.) Advances in Computer Science, Engineering & Applications. AISC, vol. 166, pp. 519–527. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-30157-5_52 CrossRefGoogle Scholar
  3. 3.
    Aguilar-Lasserre, A.A., Bautista, M.A.B., Ponsich, A., Huerta, M.A.G.: An AHP-based decision-making tool for the solution of multiproduct batch plant design problem under imprecise demand. Comput. Oper. Res. 36(3), 711–736 (2009)CrossRefzbMATHGoogle Scholar
  4. 4.
    Birattari, M.: Tuning Metaheuristics: A Machine Learning Perspective. Springer, Heidelberg (2009)CrossRefzbMATHGoogle Scholar
  5. 5.
    Borisenko, A.B., Karpushkin, S.V.: Hierarchy of processing equipment configuration design problems for multiproduct chemical plants. J. Comput. Syst. Sci. Int. 53(3), 410–419 (2014)CrossRefzbMATHGoogle Scholar
  6. 6.
    Borisenko, A., Haidl, M., Gorlatch, S.: A GPU parallelization of branch-and-bound for multiproduct batch plants optimization. J. Supercomput. 73(2), 639–651 (2017)CrossRefGoogle Scholar
  7. 7.
    Borisenko, A., Kegel, P., Gorlatch, S.: Optimal design of multi-product batch plants using a parallel branch-and-bound method. In: Malyshkin, V. (ed.) PaCT 2011. LNCS, vol. 6873, pp. 417–430. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-23178-0_36 CrossRefGoogle Scholar
  8. 8.
    Dawson, L., Stewart, I.: Improving ant colony optimization performance on the GPU using CUDA. In: 2013 IEEE Congress on Evolutionary Computation, pp. 1901–1908. IEEE, June 2013Google Scholar
  9. 9.
    Delévacq, A., Delisle, P., Gravel, M., Krajecki, M.: Parallel ant colony optimization on graphics processing units. J. Parallel Distrib. Comput. 73(1), 52–61 (2013)CrossRefGoogle Scholar
  10. 10.
    Dietz, A., Azzaro-Pantel, C., Pibouleau, L., Domenech, S.: Strategies for multiobjective genetic algorithm development: Application to optimal batch plant design in process systems engineering. Comput. Ind. Eng. 54(3), 539–569 (2008)CrossRefGoogle Scholar
  11. 11.
    Dorigo, M., Blum, C.: Ant colony optimization theory: a survey. Theoret. Comput. Sci. 344(2–3), 243–278 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Dorigo, M., Stützle, T.: Ant colony optimization: overview and recent advances. In: Gendreau, M., Potvin, J.-Y. (eds.) Handbook of Metaheuristics. International Series in Operations Research & Management Science, vol. 146, pp. 227–263. Springer, New York (2010). doi: 10.1007/978-1-4419-1665-5_8 CrossRefGoogle Scholar
  13. 13.
    El Hamzaoui, Y., Bassam, A., Abatal, M., Rodríguez, J.A., Duarte-Villaseñor, M.A., Escobedo, L., Puga, S.A.: Flexibility in biopharmaceutical manufacturing using particle swarm algorithms and genetic algorithms. In: Schütze, O., Trujillo, L., Legrand, P., Maldonado, Y. (eds.) NEO 2015. SCI, vol. 663, pp. 149–171. Springer, Cham (2017). doi: 10.1007/978-3-319-44003-3_7 CrossRefGoogle Scholar
  14. 14.
    Gandomi, A.H., Yang, X.S., Talatahari, S., Alavi, A.H.: Metaheuristic algorithms in modeling and optimization. In: Metaheuristic Applications in Structures and Infrastructures, pp. 1–24. Elsevier BV (2013)Google Scholar
  15. 15.
    Gonzalez-Pardo, A., Camacho, D.: A new CSP graph-based representation for ant colony optimization. In: 2013 IEEE Congress on Evolutionary Computation, pp. 689–696. Institute of Electrical and Electronics Engineers (IEEE), June 2013Google Scholar
  16. 16.
    Kallioras, N.A., Kepaptsoglou, K., Lagaros, N.D.: Transit stop inspection and maintenance scheduling: a GPU accelerated metaheuristics approach. Transp. Res. Part C Emerg. Technol. 55, 246–260 (2015)CrossRefGoogle Scholar
  17. 17.
    Khan, S., Bilal, M., Sharif, M., Sajid, M., Baig, R.: Solution of n-queen problem using ACO. In: 2009 IEEE 13th International Multitopic Conference, pp. 1–5. Institute of Electrical and Electronics Engineers (IEEE), December 2009Google Scholar
  18. 18.
    Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P., et al.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Lee, T.S., Moslemipour, G., Ting, T.O., Rilling, D.: A novel hybrid ACO/SA approach to solve stochastic dynamic facility layout problem (SDFLP). In: Huang, D.-S., Gupta, P., Zhang, X., Premaratne, P. (eds.) ICIC 2012. CCIS, vol. 304, pp. 100–108. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-31837-5_15 CrossRefGoogle Scholar
  20. 20.
    NVIDIA Corporation: CUDA C programming guide 8.0, September 2016. http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
  21. 21.
    Ponsich, A., Coello, C.C.: Differential evolution performances for the solution of mixed-integer constrained process engineering problems. Appl. Soft Comput. 11(1), 399–409 (2011)CrossRefGoogle Scholar
  22. 22.
    Pourvaziri, H., Azimi, P.: A tuned-parameter hybrid algorithm for dynamic facility layout problem with budget constraint using GA and SAA. J. Optim. Ind. Eng. 7(15), 65–75 (2014)Google Scholar
  23. 23.
    Rossi, F., Van Beek, P., Walsh, T.: Handbook of Constraint Programming. Elsevier, Amsterdam (2006)zbMATHGoogle Scholar
  24. 24.
    Solnon, C.: Ant Colony Optimization and Constraint Programming. Wiley Inc., Hoboken (2010)zbMATHGoogle Scholar
  25. 25.
    Stützle, T., López-Ibánez, M., Pellegrini, P., Maur, M., de Oca, M.M., Birattari, M., Dorigo, M.: Parameter adaptation in ant colony optimization. In: Hamadi, Y., Monfroy, E., Saubion, F. (eds.) Autonomous Search, pp. 191–215. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-21434-9_8 CrossRefGoogle Scholar
  26. 26.
    Valadi, J., Siarry, P.: Applications of Metaheuristics in Process Engineering. Springer Science & Business Media, Heidelberg (2014)CrossRefzbMATHGoogle Scholar
  27. 27.
    Wei, K.C., Wu, C.C., Yu, H.L.: Mapping the simulated annealing algorithm onto CUDA GPUs. In: 2015 10th International Conference on Intelligent Systems and Knowledge Engineering (ISKE), pp. 1–8, November 2015Google Scholar
  28. 28.
    Yang, X.S.: Nature-Inspired Metaheuristic Algorithms. Luniver Press, Bristol (2010)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Tambov State Technical UniversityTambovRussia
  2. 2.University of MuensterMuensterGermany

Personalised recommendations