Parallel Algorithm for Solving Constrained Global Optimization Problems

  • Konstantin BarkalovEmail author
  • Ilya Lebedev
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10421)


This work considers a parallel algorithm for solving multiextremal problems with non-convex constraints. The distinctive feature of this algorithm, which does not use penalty functions, is the separate consideration of each problem constraint. The search process can be conducted by reducing the original multidimensional problem to a number of related one-dimensional problems and solving this set of problems in parallel. An experimental assessment of parallel algorithm efficiency was conducted by finding the numeric solution to several hundred randomly generated multidimensional multiextremal problems with non-convex constraints.


Global optimization Constrained problems Non-convex constraints Dimension reduction Parallel algorithms 



The study was supported by the Russian Science Foundation, project No 16-11-10150.


  1. 1.
    Jones, D.R.: The direct global optimization algorithm. In: Floudas, C.A., Pardalos, P.M. (eds.) The Encyclopedia of Optimization, 2nd edn., pp. 725–735. Springer, Heidelberg (2009). doi: 10.1007/978-0-387-74759-0_128 CrossRefGoogle Scholar
  2. 2.
    Evtushenko, Y., Malkova, V.U., Stanevichyus, A.A.: Parallel global optimization of functions of several variables. Comput. Math. Math. Phys. 49(2), 246–260 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Paulavicius, R., Zilinskas, J., Grothey, A.: Parallel branch and bound for global optimization with combination of Lipschitz bounds. Optim. Methods Softw. 26(3), 487–498 (2011)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Evtushenko, Y., Posypkin, M.: A deterministic approach to global box-constrained optimization. Optim. Lett. 7(4), 819–829 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Balandin, D.V., Kogan, M.M.: Optimal linear-quadratic control: from matrix equations to linear matrix inequalities. Autom. Remote Control 72(11), 2276–2284 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Balandin, D.V., Kogan, M.M.: Pareto-optimal generalized H 2-control and vibration isolation problems. Autom. Remote Control 8, 76–90 (2017). [in Russian]Google Scholar
  7. 7.
    Strongin, R.G., Sergeyev, Y.D.: Global Optimization with Non-convex Constraints: Sequential and parallel algorithms. Springer, New York (2000). doi: 10.1007/978-1-4615-4677-1 CrossRefzbMATHGoogle Scholar
  8. 8.
    Sergeyev, Y.D., Famularo, D., Pugliese, P.: Index branch-and-bound algorithm for Lipschitz univariate global optimization with multiextremal constraints. J. Glob. Optim. 21(3), 317–341 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Barkalov, K.A., Strongin, R.G.: A global optimization technique with an adaptive order of checking for constraints. Comput. Math. Math. Phys. 42(9), 1289–1300 (2002)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Gergel, V., Sidorov, S.: A two-level parallel global search algorithm for solution of computationally intensive multiextremal optimization problems. In: Malyshkin, V. (ed.) PaCT 2015. LNCS, vol. 9251, pp. 505–515. Springer, Cham (2015). doi: 10.1007/978-3-319-21909-7_49 CrossRefGoogle Scholar
  11. 11.
    Sergeyev, Y.D., Strongin, R.G., Lera, D.: Introduction to Global Optimization Exploiting Space-Filling Curves. Springer, New York (2013). doi: 10.1007/978-1-4614-8042-6 CrossRefzbMATHGoogle Scholar
  12. 12.
    Gaviano, M., Kvasov, D.E., Lera, D., Sergeyev, Y.: Software for generation of classes of test functions with known local and global minima for global optimization. ACM Trans. Math. Softw. 29(4), 469–480 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Sergeyev, Y.D., Kvasov, D.E.: Global search based on efficient diagonal partitions and a set of Lipschitz constants. SIAM J. Optim. 16(3), 910–937 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Paulavicius, R., Sergeyev, Y., Kvasov, D., Zilinskas, J.: Globally-biased DISIMPL algorithm for expensive global optimization. J. Glob. Optim. 59(2–3), 54–567 (2014)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Sergeyev, Y.D., Kvasov, D.E.: A deterministic global optimization using smooth diagonal auxiliary functions. Commun. Nonlinear Sci. Numer. Simul. 21(1–3), 99–111 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Gergel, V.: An approach for generating test problems of constrained global optimization. In: Proceedings of Learning and Intelligent Optimization Conference (to appear)Google Scholar
  17. 17.
    Barkalov, K., Gergel, V., Lebedev, I.: Use of Xeon Phi coprocessor for solving global optimization problems. In: Malyshkin, V. (ed.) PaCT 2015. LNCS, vol. 9251, pp. 307–318. Springer, Cham (2015). doi: 10.1007/978-3-319-21909-7_31 CrossRefGoogle Scholar
  18. 18.
    Barkalov, K., Gergel, V.: Parallel global optimization on GPU. J. Glob. Optim. 66(1), 3–20 (2016)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Lobachevsky State University of Nizhny NovgorodNizhny NovgorodRussia

Personalised recommendations