Distributed Algorithm of Dynamic Multidimensional Data Mapping on Multidimensional Multicomputer in the LuNA Fragmented Programming System

  • Victor E. Malyshkin
  • Georgy A. SchukinEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10421)


The distributed algorithm Patch with local communications for dynamic data allocation of a distributed multicomputer in the course of an application LuNA fragmented program execution is presented. The objective of the Patch is to decrease the length and as result the volume of communications while the parallel program is executed. Communications include all the internode interactions for data processing, dynamic data allocation, search and balancing. The Patch takes into account the data dependencies and maximally tries to keep the data locality during all the internode interactions.


Dynamic data allocation Dynamic load balancing Distributed algorithms with local interactions Fragmented programming technology 


  1. 1.
    Malyshkin, V.E., Perepelkin, V.A., Schukin, G.A.: Scalable distributed data allocation in LuNA fragmented programming system. J. Supercomput. 73(2), 726–732 (2017). Springer, USCrossRefGoogle Scholar
  2. 2.
    Malyshkin, V.E., Perepelkin, V.A., Schukin, G.A.: Distributed algorithm of data allocation in the fragmented programming system LuNA. In: Malyshkin, V. (ed.) PaCT 2015. LNCS, vol. 9251, pp. 80–85. Springer, Cham (2015). doi: 10.1007/978-3-319-21909-7_8 CrossRefGoogle Scholar
  3. 3.
    Malyshkin, V.E., Perepelkin, V.A.: LuNA fragmented programming system, main functions and peculiarities of run-time subsystem. In: Malyshkin, V. (ed.) PaCT 2011. LNCS, vol. 6873, pp. 53–61. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-23178-0_5 CrossRefGoogle Scholar
  4. 4.
    Malyshkin, V.E., Perepelkin, V.A.: Optimization methods of parallel execution of numerical programs in the LuNA fragmented programming system. J. Supercomput. 61(1), 235–248 (2012)CrossRefGoogle Scholar
  5. 5.
    Malyshkin, V.E., Perepelkin, V.A.: The PIC implementation in LuNA system of fragmented programming. J. Supercomput. 69(1), 89–97 (2014)CrossRefGoogle Scholar
  6. 6.
    Kraeva, M.A., Malyshkin, V.E.: Assembly technology for parallel realization of numerical models on MIMD-multicomputers. J. Future Gener. Comput. Syst. 17(6), 755–765 (2001)CrossRefzbMATHGoogle Scholar
  7. 7.
    Gonzalez-Escribano, A., Torres, Y., Fresno, J., Llanos, D.R.: An extensible system for multilevel automatic data partition and mapping. J. IEEE Trans. Parallel Distrib. Syst. 25(5), 1145–1154 (2014). IEEECrossRefGoogle Scholar
  8. 8.
    Chamberlain, B.L., Deitz, S.J., Iten, D., Choi, S.-E.: User-defined distributions and layouts in chapel: philosophy and framework. In: 2nd USENIX Conference on Hot Topics in Parallelism, HotPar 2010, p. 12. USENIX Association, Berkeley (2010)Google Scholar
  9. 9.
    Bikshandi, G., Guo, J., Hoeflinger, D., Almasi, G., Fraguela, B.B., Garzarán, M.J., Padua, D., von Praun, C.: Programming for parallelism and locality with hierarchically tiled arrays. In: 11th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP 2006, pp. 48–57. ACM, New York (2006)Google Scholar
  10. 10.
    Furtado, P., Baumann, P.: Storage of multidimensional arrays based on arbitrary tiling. In: 15th International Conference on Data Engineering, pp. 480–489. IEEE (1999)Google Scholar
  11. 11.
    Begau, C., Sutmann, G.: Adaptive dynamic load-balancing with irregular domain decomposition for particle simulations. J. Comput. Phys. Commun. 190, 51–61 (2015). Elsevier B.V.CrossRefGoogle Scholar
  12. 12.
    Fattebert, J.-L., Richards, D.F., Glosli, J.N.: Dynamic load balancing algorithm for molecular dynamics based on Voronoi cells domain decompositions. J. Comput. Phys. Commun. 183(12), 2608–2615 (2012). Elsevier B.V.CrossRefGoogle Scholar
  13. 13.
    Deng, Y., Peierls, R.F., Rivera, C.: An adaptive load balancing method for parallel molecular dynamics simulations. J. Comput. Phys. 161(1), 250–263 (2000). Elsevier B.V.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Fleissner, F., Eberhard, P.: Parallel load-balanced simulation for short-range interaction particle methods with hierarchical particle grouping based on orthogonal recursive bisection. Int. J. Numer. Meth. Eng. 74(4), 531–553 (2008). Wiley, Ltd.CrossRefzbMATHGoogle Scholar
  15. 15.
    Hayashi, R., Horiguchi, S.: Efficiency of dynamic load balancing based on permanent cells for parallel molecular dynamics simulation. In: 14th International Parallel and Distributed Processing Symposium, IPDPS 2000, pp. 85–92. IEEE (2000)Google Scholar
  16. 16.
    Rope and Patch demonstration page.

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institute of Computational Mathematics and Mathematical GeophysicsSiberian Branch of Russian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk National Research UniversityNovosibirskRussia
  3. 3.Novosibirsk State Technical UniversityNovosibirskRussia

Personalised recommendations