Advertisement

Automation Development Framework of Scalable Scientific Web Applications Based on Subject Domain Knowledge

  • Igor V. Bychkov
  • Gennady A. Oparin
  • Vera G. Bogdanova
  • Anton A. Pashinin
  • Sergey A. GorskyEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10421)

Abstract

Currently high-performance computing technologies using computational capabilities for solving scientific, are actively improving. The purpose of our research is the development of toolkit for construction and execution of scientific service-oriented application in heterogeneous distributed computing environment (HDCE). These tools provide the access for subject domain experts to the high-capacity computing resource, using these resources without extensive knowledge of computing architecture and low-level software, and the parallel execution of the user application on the base of the service-oriented technology and multi-agent control. We describe an architecture and functional capabilities of automated toolkit for the service-oriented application creation based on applied programs package, and multi-agent control of this application parallel running in HDCE. We demonstrate an example of the creation of the web-application for parametric feedback synthesis of linear dynamic object by these tools. The offered technology allows simplifying service creation and provides new qualitative opportunities of controlling parallel high-performance computations.

Keywords

Scalable application Service Parametric synthesis of control law 

Notes

Acknowledgments

The research was supported by Russian Foundation of Basic Research, projects no. 15-29-07955.

References

  1. 1.
    Somov, Y.I., Oparin, G.A.: Methods and software for computer-aided design of the spacecraft guidance. In: Navigation and Control Systems, MESA, vol. 7, no. 4, CSP, Cambridge, UK, I&S 2016 - Florida, USA, pp. 613–624 (2016)Google Scholar
  2. 2.
  3. 3.
    Aleksandrov, A.G., Isakov, R.V., Mikhailova, L.S.: Structure of the software for computer-aided logical design of automatic control. Autom. Remote Control 66(4), 664–671 (2005)CrossRefzbMATHGoogle Scholar
  4. 4.
    Aleksandrov, A.G., Mikhailova, L.S., Stepanov, M.F.: GAMMA-3 system and its application. Autom. Remote Control 72(10), 2023–2030 (2011). doi: 10.1134/S0005117911100031 CrossRefzbMATHGoogle Scholar
  5. 5.
    Polyak, B.T., Shcherbakov, P.S.: Hard problems in linear control theory: possible approaches to solution. Autom. Remote Control 66(5), 681–718 (2005). doi: 10.1007/s10513-005-0115-0 MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Nemirovskii, A.A.: Several NP-hard problems arising in robust stability analysis. Math. Control Signals Syst. 6, 99–105 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Kovalchuk, S.V., Smirnov, P.A., Knyazkov, K.V., Zagarskikh, A.S., Boukhanovsky, A.V.: Knowledge-based expressive technologies within cloud computing environments. In: Wen, Z., Li, T. (eds.) Practical Applications of Intelligent Systems. AISC, vol. 279, pp. 1–11. Springer, Heidelberg (2014). doi: 10.1007/978-3-642-54927-4_1 Google Scholar
  8. 8.
    Sukhoroslov, O., Volkov, S., Afanasiev, A.: Web-based platform for publication and distributed execution of computing applications. In: 14th International Symposium on Parallel and Distributed Computing (ISPDC), pp. 175–184. IEEE (2015)Google Scholar
  9. 9.
    Nasonov, D., Visheratina, A., Butakova, N., Shindyapinaa, N., Melnika, M., Boukhanovskyb, A.: Hybrid evolutionary workflow scheduling algorithm for dynamic heterogeneous distributed computational environment. In: International Joint Conference SOCO 2014-CISIS 2014-ICEUTE 2014, pp. 83–92 (2014)Google Scholar
  10. 10.
    Wolstencroft, K., Haines, R., Fellows, D., et al.: The taverna workflow suite: designing and executing workflows of web services on the desktop, web or in the cloud. Nucleic Acids Res. 41(Web Server), 557–561 (2013). doi: 10.1093/nar/gkt328 CrossRefGoogle Scholar
  11. 11.
    Deelman, E.: Pegasus in the Cloud: Science Automation through Workflow Technologies. IEEE Internet Comput. 20(1), 70–76 (2016)CrossRefGoogle Scholar
  12. 12.
    Silva, R.F., Deelman, E., Filgueira, R., Vahi, K., Rynge, M., Mayani, R., Mayer, B.: Automating environmental computing applications with scientific workflows. In: Environmental Computing Workshop (ECW 2016) (2016)Google Scholar
  13. 13.
    Silva, R.F., Vicente, R.F., Deelman, E., Pairo-Castineira, E., Overton, I., Atkinson, M.: Using simple PID controllers to prevent and mitigate faults in scientific workflows. In: 11th Workflows in Support of Large-Scale Science (WORKS 2016) (2016)Google Scholar
  14. 14.
    Knyazkov, K.V., Kovalchuk, S.V.: Modeling and simulation framework for development of interactive virtual environments. Procedia Comput. Sci. 29, 332–342 (2014). ElsevierCrossRefGoogle Scholar
  15. 15.
    Kaljaev, A.I., Kaljaev, I.A., Korovin, J.: Metod mul’tiagentnogo dispetchirovanija resursov v geterogennoj oblachnoj srede pri vypolnenii potoka zadach. Herald Comput. Inf. Technol. 11, 31–40 (2015)Google Scholar
  16. 16.
    Kravari, K., Bassiliades, N.: A survey of agent platforms. J. Artif. Soc. Soc. Simul. 18(1), 11 (2015)CrossRefGoogle Scholar
  17. 17.
    Gorodnichev, M.A., Vaycel, S.A.: Organization of access to supercomputing resources in the HPC community cloud. Comput. Math. Soft. Eng. 3(4), 85–95 (2014). doi: 10.14529/cmse140406 Google Scholar
  18. 18.
    Volkov, S., Sukhoroslov, O.A.: Generic web service for running parameter sweep experiments in distributed computing environment. Procedia Comput. Sci. 66, 477–486 (2015)CrossRefGoogle Scholar
  19. 19.
    Krauter, K., Buyya, R., Maheswaran, M.: A taxonomy and survey of grid resource management systems for distributed computing. Soft. Pract. Exper. 32, 135–164 (2002)CrossRefzbMATHGoogle Scholar
  20. 20.
    Bychkov, I.V., Oparin, G., Tchernykh, A., Feoktistov, A., Bogdanova, V., Gorsky, S.: Conceptual model of problem-oriented heterogeneous distributed computing environment with multi-agent management. Procedia Comput. Sci. 103, 162–167 (2017)CrossRefGoogle Scholar
  21. 21.
    Bychkov, I.V., Oparin, G.A., Feoktistov, A.G., Bogdanova, V.G., Pashinin, A.A.: Service-oriented multiagent control of distributed computations. Autom. Remote Control 76(11), 2000–2010 (2015)CrossRefzbMATHGoogle Scholar
  22. 22.
    Bychkov, I.V., Oparin, G.A., Feoktistov, A.G., Sidorov, I.A., Bogdanova, V.G., Gorsky, S.A.: Multiagent simulation control of computational systems on the basis of meta-monitoring and imitational. Optoelectron. Instrum. Data Process. 52(2), 107–112 (2016). doi: 10.3103/S8756699016020011 CrossRefGoogle Scholar
  23. 23.
    Bogdanova, V.G., Bychkov, I.V., Korsukov, A.S., Oparin, G.A., Feoktistov, A.G.: Multiagent approach to controlling distributed computing in a cluster grid system. J. Comput. Syst. Sci. Int. 53(5), 713–722 (2014). doi: 10.1134/S1064230714040030 CrossRefzbMATHGoogle Scholar
  24. 24.
    Balandin, D.V., Kogan, M.M.: Synthesis of nonfragile controllers on the basis of linear matrix inequalities. Autom. Remote Control 67(12), 2002–2009 (2006). doi: 10.1134/S0005117906120125 MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Oparin, G., Feoktistov, A., Bogdanova, V., Sidorov, I.: Automation of multi-agent control for complex dynamic systems in heterogeneous computational network. In: AIP Conference Proceedings 1798 (2017). doi: 10.1063/1.4972709
  26. 26.
    Bara, G.I., Boutayeb, M.: Static Output feedback stabilization with Open image in new windowPerformance for linear discrete-time system. IEEE Trans. Autom. Control 50(2), 250–254 (2005)Google Scholar
  27. 27.
    Irkutsk Supercomputer Center of SB RAS. http://hpc.icc.ru
  28. 28.
    Bychkov, I., Oparin, G., Feoktistov, A., Bogdanova, V., Sidorov, I.: The service-oriented multiagent approach to high-performance scientific computing. In: Dimov, I., Faragó, I., Vulkov, L. (eds.) Numerical Analysis and Its Applications, NAA 2016. LNCS, vol. 10187, pp. 261–268. Springer, Cham (2017). doi: 10.1007/978-3-319-57099-0_27 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Igor V. Bychkov
    • 1
  • Gennady A. Oparin
    • 1
  • Vera G. Bogdanova
    • 1
  • Anton A. Pashinin
    • 1
  • Sergey A. Gorsky
    • 1
    Email author
  1. 1.Matrosov Institute for Systems Dynamics and Control TheorySiberian Branch of Russian Academy of SciencesIrkutskRussia

Personalised recommendations