Defining Order of Execution in Aspect Programming Language

  • Sergey ArykovEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10421)


A fragmented approach to parallel programming and its implementation in the Aspect programming language are considered. Approach to define order of execution of computation fragments in Aspect language is described and illustrated by the example of matrix LU decomposition task.


Parallel programming Technology of fragmented programming Aspect programming language Control schemes 


  1. 1.
    Kireev, S., Malyshkin, V.: Fragmentation of numerical algorithms for parallel subroutines library. J. Supercomput. 57, 161–171 (2011). doi: 10.1007/s11227-010-0385-3 CrossRefGoogle Scholar
  2. 2.
    Arykov, S., Malyshkin, V.: Asynchronous language and system of numerical algorithms fragmented programming. In: Malyshkin, V. (ed.) PaCT 2009. LNCS, vol. 5698, pp. 1–7. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-03275-2_1 CrossRefGoogle Scholar
  3. 3.
    Arykov, S.: Asynchronous model of computation controlled by strict partial order. In: 10th Annual International Scientific Conference on Parallel Computing Technologies (PCT-2016). CEUR Workshop Proceedings, vol. 1576, pp. 54–67. CEUR-WS (2016)Google Scholar
  4. 4.
    Bystrov, A., Dudorov, N., Kotov, V.: About the core language. In: Languages and Programming Systems (in Russian), pp. 85–106. CC SB AS USSR, Novosibirsk (1979)Google Scholar
  5. 5.
    Malyshkin, V., Perepelkin, V.: The PIC implementation in LuNA system of fragmented programming. J. Supercomput. 69, 89–97 (2014). doi: 10.1007/s11227-014-1216-8 CrossRefGoogle Scholar
  6. 6.
    Malyshkin, V., Perepelkin, V., Schukin, G.: Scalable distributed data allocation in LuNA fragmented programming system. J. Supercomput. 73, 726–732 (2017). doi: 10.1007/s11227-016-1781-0 CrossRefGoogle Scholar
  7. 7.
    Buttari, A., Langou, J., Kurzak, J., Dongarra, J.: A class of parallel tiled linear algebra algorithms for multicore architectures. Parallel Comput. 35, 38–53 (2009). doi: 10.1016/j.parco.2008.10.002. Elsevier, AmsterdamMathSciNetCrossRefGoogle Scholar
  8. 8.
    YarKhan, A., Kurzak, J., Luszczek, P., Dongarra, J.: Porting the PLASMA numerical library to the OpenMP standard. Int. J. Parallel Prog. 45, 1–22 (2016). doi: 10.1007/s10766-016-0441-6 Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institute of Computational Mathematics and Mathematical GeophysicsSiberian Branch of Russian Academy of SciencesNovosibirskRussia

Personalised recommendations