Properties of the Conservative Parallel Discrete Event Simulation Algorithm

  • Liliia ZiganurovaEmail author
  • Lev Shchur
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10421)


We address question of synchronisation in parallel discrete event simulation (PDES) algorithms. We study synchronisation in conservative PDES model adding long-range connections between processing elements. We investigate how fraction of the random long-range connections in the synchronisation scheme influences the simulation time profile of PDES. We found that small fraction of random distant connections enhance synchronisation, namely, the width of the local virtual times remains constant with increasing number of processing elements. At the same time the conservative algorithm of PDES on small-world networks remains free from deadlocks. We compare our results with the case-study simulations.


Parallel discrete event simulation PDES Conservative algorithm Small-world 



This work is supported by grant 14-21-00158 of the Russian Science Foundation.


  1. 1.
    Bailey, D.H., David, H., Dongarra, J., Gao, G., Hoisie, A., Hollingsworth, J., Jefferson, D., Kamath, C., Malony, A., Quinian, D.: Performance Technologies for Peta-Scale Systems: A White Paper Prepared by the Performance Evaluation Research Center and Collaborators. White paper, Lawrence Berkeley National Laboratories (2003)Google Scholar
  2. 2.
    Fujimoto, R.M.: Parallel discrete event simulation. Commun. ACM 33, 30–53 (1990). doi: 10.1145/84537.84545 CrossRefGoogle Scholar
  3. 3.
    Jefferson, D.R.: Virtual time. ACM Trans. Program. Lang. Syst. 7, 404–425 (1985). doi: 10.1145/3916.3988 CrossRefGoogle Scholar
  4. 4.
    Shchur, L.N., Novotny, M.A.: Evolution of time horizons in parallel and grid simulations. Phys. Rev. E 70, 026703 (2004). doi: 10.1103/PhysRevE.70.026703 CrossRefGoogle Scholar
  5. 5.
    Korniss, G., Toroczkai, Z., Novotny, M.A., Rikvold, P.A.: From massively parallel algorithms and fluctuating time horizons to nonequilibrium surface growth. Phys. Rev. Lett. 84, 1351 (2000). doi: 10.1103/PhysRevLett.84.1351 CrossRefGoogle Scholar
  6. 6.
    Kardar, M., Parisi, G., Zhang, Y.C.: Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56, 889 (1986). doi: 10.1103/PhysRevLett.56.889 CrossRefzbMATHGoogle Scholar
  7. 7.
    Shchur, L.N., Shchur, L.V.: Relation of parallel discrete event simulation algorithms with physical models. J. Phys: Conf. Ser. 640, 012065 (2015). doi: 10.1088/1742-6596/640/1/012065 zbMATHGoogle Scholar
  8. 8.
    Shchur, L., Shchur, L.: Parallel discrete event simulation as a paradigm for large scale modeling experiments. Selected Papers of the XVII International Conference on Data Analytics and Management in Data Intensive Domains (DAMDID/RCDL 2015), Obninsk, Russia, 13–16 October 2015, pp. 107–113, (2015).
  9. 9.
    Ziganurova, L., Novotny, M.A., Shchur, L.N.: Model for the evolution of the time profile in optimistic parallel discrete event simulations. J. Phys. Conf. Ser. 681, 012047 (2016). doi: 10.1088/1742-6596/681/1/012047 CrossRefGoogle Scholar
  10. 10.
    Alon, U., Evans, M.R., Hinrichsen, H., Mukamel, D.: Roughening transition in a one-dimensional growth process. Phys. Rev. Lett. 76, 2746 (1996). doi: 10.1103/PhysRevLett.76.2746 CrossRefGoogle Scholar
  11. 11.
    Guclu, H., Korniss, G., Novotny, M.A., Toroczkai, Z., Racz, Z.: Synchronization landscapes in small-world-connected computer networks. Phys. Rev. E 73, 066115 (2006). doi: 10.1103/PhysRevE.73.066115 CrossRefGoogle Scholar
  12. 12.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Nature 393, 440–442 (1998). doi: 10.1038/30918 CrossRefzbMATHGoogle Scholar
  13. 13.
    Wilsey, P.A.: Some properties of events executed in discrete-event simulation models. In: Proceedings of the 2016 annual ACM Conference on SIGSIM Principles of Advanced Discrete Simulation, pp. 165–176. ACM, New York (2016). doi: 10.1145/2901378.2901400
  14. 14.
    Guskova, M.S., Barash, L.Y., Shchur, L.N.: RNGAVXLIB: Program library for random number generation: AVX realization. Comput. Phys. Commun. 200, 402–405 (2016). doi: 10.1016/j.cpc.2015.11.001 CrossRefzbMATHGoogle Scholar
  15. 15.
    MVAPICH: MPI over InfiniBand, Omni-Path, Ethernet/iWARP, and RoCE.
  16. 16.
    Carothers, C.D., Bauer, D., Pearce, S.: ROSS: A high-performance, low-memory, modular Time Warp system. J. Parallel Distrib. Comput. 62, 1648–1669 (2002). doi: 10.1016/S0743-7315(02)00004-7 CrossRefzbMATHGoogle Scholar
  17. 17.
    Weber, D.: Time warp simulation on multi-core processors and clusters. Master’s thesis, University of Cincinnati, Cincinnati, OH (2016)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Scientific Center in ChernogolovkaChernogolovkaRussia
  2. 2.National Research University Higher School of EconomicsMoscowRussia
  3. 3.Landau Institute for Theoretical PhysicsChernogolovkaRussia

Personalised recommendations