Skip to main content

Parallel Implementation of Cellular Automaton Model of the Carbon Corrosion Under the Influence of the Electrochemical Oxidation

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10421))

Abstract

In the paper we present a cellular automaton model of electrochemical oxidation of the carbon. A two-dimensional sample of the electro-conductive carbon black “Ketjenblack ES DJ 600” is simulated. In the model the sample consists of a ring-formed granules of carbon. The carbon granules under the influence of the electrochemical oxidation are destroyed through a few successive stages. The rates of these oxidation stages are chosen to fit the simulation result with the experiment. In result of a computer simulation of carbon electrochemical oxidation the portions of surface atoms and atoms with different degree of oxidation were calculated and compared with the experimental data. In addition, a parallel implementation of the cellular automaton simulating the carbon corrosion is developed and efficiency of the parallel code is analyzed.

Supported by Russian Science Foundation under Grant 14-11-00083.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The website of the JSCC RAS is http://www.jscc.ru/.

References

  1. Toffoli, T., Margolus, N.: Cellular Automata Machines: A New Environment for Modeling, p. 259. MIT Press, USA (1987)

    Google Scholar 

  2. Sabelfeld, K.K., Brandt, O., Kaganer, V.M.: Stochastic model for the fluctuation-limited reaction-diffusion kinetics in inhomogeneous media based on the nonlinear Smoluchowski equations. J. Math. Chem. 53(2), 651–669 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Karasev, V.V., Onischuk, A.A., Glotov, O.G., Baklanov, A.M., Maryasov, A.G., Zarko, V.E., Panlov, V.N., Levykin, A.I., Sabelfeld, K.K.: Formation of charged aggregates of \({\rm Al}_2{\rm O}_3\) nanoparticles by combustion of aluminum droplets in air. Combust. Flame 138, 40–54 (2004)

    Google Scholar 

  4. Gillespie, D.T.: A diffusional bimolecular propensity function. J. Chem. Phys. 131(16), 164109-1–164109-13 (2009)

    Google Scholar 

  5. DOE The US Department of Energy (DOE). Energy Efficiency and Renewable Energy. http://www.eere.energy.gov/hydrogenandfuelcells/mypp/pdfs/fuel_Cells.pdf and the US DRIVE Fuel Cell Technical Team Technology Roadmap. www.uscar.org/guest/teams/17/Fuel-Cell-Tech-Team

  6. Li, L., Hu, L., Li, J., Wei, Z.: Enhanced stability of Pt nanoparticle electrocatalysts for fuel cells. Nano Res. 8(2), 418–440 (2015)

    Article  Google Scholar 

  7. Capelo, A., de Esteves, M.A., de Sá, A.I., Silva, R.A., Cangueiro, L., Almeida, A., et al.: Stability and durability under potential cycling of Pt/C catalyst with new surface-functionalized carbon support. Int. J. Hydrog. Energy 41(30), 12962–12975 (2016)

    Article  Google Scholar 

  8. Gribov, E.N., Kuznetzov, A.N., Golovin, V.A., Voropaev, I.N., Romanenko, A.V., Okunev, A.G.: Degradation of Pt/C catalysts in start-stop cycling tests. Russian J. Electrochem. 50(7), 700–711 (2014)

    Article  Google Scholar 

  9. Gribov, E.N., Kuznetsov, A.N., Voropaev, I.N., Golovin, V.A., Simonov, P.A., Romanenko, A.V., et al.: Analysis of the corrosion kinetic of Pt/C catalysts prepared on different carbon supports under the Start-Stop cycling. Electrocatalysis 7, 159–73 (2016)

    Article  Google Scholar 

  10. Shrestha, S., Liu, Y., Mustain, W.E.: Electrocatalytic activity and stability of Pt clusters on state-of-the-art supports: a review. Catal. Rev. Sci. Eng. 53, 256–336 (2011)

    Article  Google Scholar 

  11. Meyers, J.P., Darling, R.M.: Model of carbon corrosion in PEM fuel cells. J. Electrochem. Soc. 153(8), A1432–A1442 (2006)

    Article  Google Scholar 

  12. Pandy, A., Yang, Z., Gummalla, M., Atrazhev, V.V., Kuzminyh, N., Vadim, I.S., Burlatsky, S.F.: A carbon corrosion model to evaluate the effect of steady state and transient operation of a polymer electrolyte membrane fuel cell. J. Electrochem. Soci. 160(9), F972–F979 (2013). arXiv:1401.4285 [physics.chem-ph]. doi:10.1149/2.036309jes

  13. Chen, J., Siegel, J.B., Matsuura, T., Stefanopoulou, A.G.: Carbon corrosion in PEM fuel cell dead-ended anode operations. J. Electrochem. Soc. 158(9), B1164–B1174 (2011)

    Article  Google Scholar 

  14. Gallagher, K.G., Fuller, T.F.: Kinetic model of the electrochemical oxidation of graphitic carbon in acidic environments. Phys. Chem. Chem. Phys. 11, 11557–11567 (2009)

    Article  Google Scholar 

  15. Gribov, E.N., Maltseva, N.V., Golovin, V.A., Okunev, A.G.: A simple method for estimating the electrochemical stability of the carbon materials. Int. J. Hydrog. Energy 41, 18207–18213 (2016)

    Article  Google Scholar 

  16. Golovin, V.A., Maltseva, N.V., Gribov, E.N., Okunev, A.G.: New nitrogen-containing carbon supports with improved corrosion resistance for proton exchange membrane fuel cells. Int. J. Hydrog. Energy (in press). doi:10.1016/j.ijhydene.2017.02.117

  17. Maltseva, N.V., Golovin, V.A., Chikunova, Y., Gribov, E.N.: Influence of the number of surface oxygen on the electrochemical capacity and stability of high surface Ketjen Black ES 600 DJ. Submitted in Russ. J. Electrochem

    Google Scholar 

  18. Meier, J.C., Katsounaros, I., Galeano, C., Bongard, H.J., Topalov, A.A., Kostka, A., et al.: Stability investigations of electrocatalysts on the nanoscale. Energy Environ. Sci. 5, 9319–9330 (2012)

    Article  Google Scholar 

  19. Bandman, O.L.: Mapping physical phenomena onto CA-models, AUTOMATA-2008. In: Adamatzky, A., Alonso-Sanz, R., Lawniczak, A., Martinez, G.J., Morita, K., Worsch, T. (eds.) Theory and Applications of Cellular Automata, pp. 381–397. Luniver Press, UK (2008)

    Google Scholar 

  20. Bandman, O.L.: Cellular automata composition techniques for spatial dynamics simulation. In: Hoekstra, A.G., et al. (eds.) Simulating Complex Systems by Cellular Automata. Understanding Complex Systems, Berlin, pp. 81–115 (2010)

    Google Scholar 

  21. Abubaker, A., Qahwaji, R., Ipson, S., Saleh, M.: One scan connected component labeling technique, signal processing and communications. In: IEEE International Conference on ICSPC 2007, pp. 1283–1286 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Kireeva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Kireeva, A.E., Sabelfeld, K.K., Maltseva, N.V., Gribov, E.N. (2017). Parallel Implementation of Cellular Automaton Model of the Carbon Corrosion Under the Influence of the Electrochemical Oxidation. In: Malyshkin, V. (eds) Parallel Computing Technologies. PaCT 2017. Lecture Notes in Computer Science(), vol 10421. Springer, Cham. https://doi.org/10.1007/978-3-319-62932-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62932-2_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62931-5

  • Online ISBN: 978-3-319-62932-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics