Advertisement

Parallel Implementation of Cellular Automaton Model of the Carbon Corrosion Under the Influence of the Electrochemical Oxidation

  • A. E. KireevaEmail author
  • K. K. Sabelfeld
  • N. V. Maltseva
  • E. N. Gribov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10421)

Abstract

In the paper we present a cellular automaton model of electrochemical oxidation of the carbon. A two-dimensional sample of the electro-conductive carbon black “Ketjenblack ES DJ 600” is simulated. In the model the sample consists of a ring-formed granules of carbon. The carbon granules under the influence of the electrochemical oxidation are destroyed through a few successive stages. The rates of these oxidation stages are chosen to fit the simulation result with the experiment. In result of a computer simulation of carbon electrochemical oxidation the portions of surface atoms and atoms with different degree of oxidation were calculated and compared with the experimental data. In addition, a parallel implementation of the cellular automaton simulating the carbon corrosion is developed and efficiency of the parallel code is analyzed.

Keywords

Cellular automaton Parallel implementation Domain decomposition Electrochemical oxidation Carbon corrosion 

References

  1. 1.
    Toffoli, T., Margolus, N.: Cellular Automata Machines: A New Environment for Modeling, p. 259. MIT Press, USA (1987)Google Scholar
  2. 2.
    Sabelfeld, K.K., Brandt, O., Kaganer, V.M.: Stochastic model for the fluctuation-limited reaction-diffusion kinetics in inhomogeneous media based on the nonlinear Smoluchowski equations. J. Math. Chem. 53(2), 651–669 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Karasev, V.V., Onischuk, A.A., Glotov, O.G., Baklanov, A.M., Maryasov, A.G., Zarko, V.E., Panlov, V.N., Levykin, A.I., Sabelfeld, K.K.: Formation of charged aggregates of \({\rm Al}_2{\rm O}_3\) nanoparticles by combustion of aluminum droplets in air. Combust. Flame 138, 40–54 (2004)Google Scholar
  4. 4.
    Gillespie, D.T.: A diffusional bimolecular propensity function. J. Chem. Phys. 131(16), 164109-1–164109-13 (2009)Google Scholar
  5. 5.
    DOE The US Department of Energy (DOE). Energy Efficiency and Renewable Energy. http://www.eere.energy.gov/hydrogenandfuelcells/mypp/pdfs/fuel_Cells.pdf and the US DRIVE Fuel Cell Technical Team Technology Roadmap. www.uscar.org/guest/teams/17/Fuel-Cell-Tech-Team
  6. 6.
    Li, L., Hu, L., Li, J., Wei, Z.: Enhanced stability of Pt nanoparticle electrocatalysts for fuel cells. Nano Res. 8(2), 418–440 (2015)CrossRefGoogle Scholar
  7. 7.
    Capelo, A., de Esteves, M.A., de Sá, A.I., Silva, R.A., Cangueiro, L., Almeida, A., et al.: Stability and durability under potential cycling of Pt/C catalyst with new surface-functionalized carbon support. Int. J. Hydrog. Energy 41(30), 12962–12975 (2016)CrossRefGoogle Scholar
  8. 8.
    Gribov, E.N., Kuznetzov, A.N., Golovin, V.A., Voropaev, I.N., Romanenko, A.V., Okunev, A.G.: Degradation of Pt/C catalysts in start-stop cycling tests. Russian J. Electrochem. 50(7), 700–711 (2014)CrossRefGoogle Scholar
  9. 9.
    Gribov, E.N., Kuznetsov, A.N., Voropaev, I.N., Golovin, V.A., Simonov, P.A., Romanenko, A.V., et al.: Analysis of the corrosion kinetic of Pt/C catalysts prepared on different carbon supports under the Start-Stop cycling. Electrocatalysis 7, 159–73 (2016)CrossRefGoogle Scholar
  10. 10.
    Shrestha, S., Liu, Y., Mustain, W.E.: Electrocatalytic activity and stability of Pt clusters on state-of-the-art supports: a review. Catal. Rev. Sci. Eng. 53, 256–336 (2011)CrossRefGoogle Scholar
  11. 11.
    Meyers, J.P., Darling, R.M.: Model of carbon corrosion in PEM fuel cells. J. Electrochem. Soc. 153(8), A1432–A1442 (2006)CrossRefGoogle Scholar
  12. 12.
    Pandy, A., Yang, Z., Gummalla, M., Atrazhev, V.V., Kuzminyh, N., Vadim, I.S., Burlatsky, S.F.: A carbon corrosion model to evaluate the effect of steady state and transient operation of a polymer electrolyte membrane fuel cell. J. Electrochem. Soci. 160(9), F972–F979 (2013). arXiv:1401.4285 [physics.chem-ph]. doi: 10.1149/2.036309jes
  13. 13.
    Chen, J., Siegel, J.B., Matsuura, T., Stefanopoulou, A.G.: Carbon corrosion in PEM fuel cell dead-ended anode operations. J. Electrochem. Soc. 158(9), B1164–B1174 (2011)CrossRefGoogle Scholar
  14. 14.
    Gallagher, K.G., Fuller, T.F.: Kinetic model of the electrochemical oxidation of graphitic carbon in acidic environments. Phys. Chem. Chem. Phys. 11, 11557–11567 (2009)CrossRefGoogle Scholar
  15. 15.
    Gribov, E.N., Maltseva, N.V., Golovin, V.A., Okunev, A.G.: A simple method for estimating the electrochemical stability of the carbon materials. Int. J. Hydrog. Energy 41, 18207–18213 (2016)CrossRefGoogle Scholar
  16. 16.
    Golovin, V.A., Maltseva, N.V., Gribov, E.N., Okunev, A.G.: New nitrogen-containing carbon supports with improved corrosion resistance for proton exchange membrane fuel cells. Int. J. Hydrog. Energy (in press). doi: 10.1016/j.ijhydene.2017.02.117
  17. 17.
    Maltseva, N.V., Golovin, V.A., Chikunova, Y., Gribov, E.N.: Influence of the number of surface oxygen on the electrochemical capacity and stability of high surface Ketjen Black ES 600 DJ. Submitted in Russ. J. ElectrochemGoogle Scholar
  18. 18.
    Meier, J.C., Katsounaros, I., Galeano, C., Bongard, H.J., Topalov, A.A., Kostka, A., et al.: Stability investigations of electrocatalysts on the nanoscale. Energy Environ. Sci. 5, 9319–9330 (2012)CrossRefGoogle Scholar
  19. 19.
    Bandman, O.L.: Mapping physical phenomena onto CA-models, AUTOMATA-2008. In: Adamatzky, A., Alonso-Sanz, R., Lawniczak, A., Martinez, G.J., Morita, K., Worsch, T. (eds.) Theory and Applications of Cellular Automata, pp. 381–397. Luniver Press, UK (2008)Google Scholar
  20. 20.
    Bandman, O.L.: Cellular automata composition techniques for spatial dynamics simulation. In: Hoekstra, A.G., et al. (eds.) Simulating Complex Systems by Cellular Automata. Understanding Complex Systems, Berlin, pp. 81–115 (2010)Google Scholar
  21. 21.
    Abubaker, A., Qahwaji, R., Ipson, S., Saleh, M.: One scan connected component labeling technique, signal processing and communications. In: IEEE International Conference on ICSPC 2007, pp. 1283–1286 (2007)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • A. E. Kireeva
    • 1
    Email author
  • K. K. Sabelfeld
    • 1
    • 2
  • N. V. Maltseva
    • 3
  • E. N. Gribov
    • 2
    • 3
  1. 1.Institute of Computational Mathematics and Mathematical Geophysics SB RASNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia
  3. 3.Boreskov Institute of CatalysisNovosibirskRussia

Personalised recommendations