Skip to main content

Error-Free Near-Threshold Adiabatic CMOS Logic in the Presence of Process Variation

  • Chapter
  • First Online:
Languages, Design Methods, and Tools for Electronic System Design

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 454))

  • 383 Accesses

Abstract

This paper provides the first analysis of process variation effect on the adiabatic logic combined with near-threshold operation. One of the significant concerns is whether reliable performance is retained with voltage scaling. We find that typical variations of process parameters do not affect error-free operation at the minimum-energy frequency. Monte Carlo simulations of a 4-bit full adder using ECRL logic with 0.45 V supply voltage show that in the presence of typical process variations, energy consumption of the circuit operating at 25 MHz increases by 10.2% in the worst case while a 100% error-free operation is maintained. The maximum operating frequency (208 MHz) is reduced to nearly half of the nominal value (385 MHz). To further improve the robustness of the adder against process variation, a bit-serial adiabatic adder is considered with an even lower energy consumption per cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kazmierski, T. J., & Beeby, S. (2011).Energy harvesting systems. New York: Springer.

    Book  Google Scholar 

  2. Hanson, S., Zhai, B., Bernstein, K., Blaauw, D., Bryant, A., Chang, L., et al. (2006) Ultralow-voltage, minimum-energy CMOS.IBM Journal of Research and Development, 50(4.5), 469–490.

    Google Scholar 

  3. Kaul, H., Anders, M., Hsu, S., Agarwal, A., Krishnamurthy, R., & Borkar, S. (2012). Near-threshold voltage (NTV) design: Opportunities and challenges. InProceedings of the 49th Annual Design Automation Conference (pp. 1153–1158). New York: ACM.

    Chapter  Google Scholar 

  4. Yemiscioglu, G., & Lee, P. (2012). 16-bit clocked adiabatic logic (CAL) logarithmic signal processor. In2012 IEEE 55th International Midwest Symposium on Circuits and Systems (MWSCAS) (pp. 113–116). New York: IEEE.

    Chapter  Google Scholar 

  5. Teichmann, P. (2011).Adiabatic logic: Future trend and system level perspective (Vol. 34). Dordrecht: Springer Science & Business Media.

    MATH  Google Scholar 

  6. Sathe, V. S., Papaefthymiou, M. C., & Ziesler, C. H. (2005). Boost logic: A high speed energy recovery circuit family. InIEEE Computer Society Annual Symposium on VLSI: New Frontiers in VLSI Design (ISVLSI’05) (pp. 22–27). New York: IEEE.

    Chapter  Google Scholar 

  7. Hu, J., & Yu, X. (2010). Near-threshold adiabatic flip-flops based on pal-2n circuits in nanometer cmos processes. In2010 Second Pacific-Asia Conference on Circuits, Communications and System (PACCS) (Vol. 1, pp. 446–449). New York: IEEE.

    Google Scholar 

  8. Zhao, W., Liu, F., Agarwal, K., Acharyya, D., Nassif, S. R., Nowka, K. J., et al. (2009). Rigorous extraction of process variations for 65-nm CMOS design.IEEE Transactions on Semiconductor Manufacturing, 22(1), 196–203.

    Article  Google Scholar 

  9. Karpuzcu, U. R., Kim, N. S., & Torrellas, J. (2013). Coping with parametric variation at near-threshold voltages.IEEE Micro, 33(4), 6–14.

    Article  Google Scholar 

  10. Moon, Y., & Jeong, D.-K. (1996). An efficient charge recovery logic circuit.IEEE Journal of Solid-State Circuits, 31(4), 514–522.

    Article  Google Scholar 

  11. Vetuli, A., Pascoli, S. D., & Reyneri, L. M. (1996). Positive feedback in adiabatic logic.Electronics Letters, 32(20), 1867–1869.

    Article  Google Scholar 

  12. Amirante, E., Bargagli-Stoffi, A., Fischer, J., Iannaccone, G., & Schmitt-Landsiedel, D. (2001). Variations of the power dissipation in adiabatic logic gates. InProceedings of the 11th International Workshop on Power and Timing Modeling, Optimization and Simulation, PATMOS (Vol. 1, pp. 9–1).

    Google Scholar 

  13. Arizona State Univ. PTM. (2006, February). 65nm BSIM4 model card for bulk CMOS. Arizona State Uni.http://ptm.asu.edu/modelcard/2006/65nm_bulk.pm. Accessed 22 Aug 2017

  14. Khursheed, S., Zhong, S., Aitken, R., Al-Hashimi, B. M., & Kundu, S. (2010) Modeling the impact of process variation on resistive bridge defects. In2010 IEEE International Test Conference (ITC) (pp. 1–10). New York: IEEE.

    Google Scholar 

  15. Asenov, A., Brown, A. R., Davies, J. H., Kaya, S., & Slavcheva, G. (2003). Simulation of intrinsic parameter fluctuations in decananometer and nanometer-scale mosfets.IEEE Transactions on Electron Devices, 50(9), 1837–1852.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yue Lu or Tom J. Kazmierski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lu, Y., Kazmierski, T.J. (2018). Error-Free Near-Threshold Adiabatic CMOS Logic in the Presence of Process Variation. In: Fummi, F., Wille, R. (eds) Languages, Design Methods, and Tools for Electronic System Design. Lecture Notes in Electrical Engineering, vol 454. Springer, Cham. https://doi.org/10.1007/978-3-319-62920-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62920-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62919-3

  • Online ISBN: 978-3-319-62920-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics