On the Obstruction of the Deformation Theory in the DGLA of Graded Derivations

  • Paolo de Bartolomeis
  • Andrei IordanEmail author
Part of the Springer INdAM Series book series (SINDAMS, volume 21)


In a recent paper, the authors studied the deformation theory in the DGLA of graded derivations \(\mathcal{D}^{{\ast}}\left (M\right )\) of differential forms on M. They proved the existence of canonical solutions \(e_{\Phi }\) of Maurer-Cartan equation depending on a vector valued differential form \(\Phi\) and gave a classification of these canonical solutions by their type: a canonical solution \(e_{\Phi }\) is of finite type r if \(\Phi ^{r}\left [\Phi,\Phi \right ]_{\mathcal{F}\mathcal{N}} = 0\) and \(r =\min \left \{\,j \in \mathbb{N}: \Phi ^{\,j}\left [\Phi,\Phi \right ]_{\mathcal{F}\mathcal{N}} = 0\ \right \}\), where \(\left [\cdot,\cdot \right ]_{\mathcal{F}\mathcal{N}}\) is the Frölicher-Nijenhuis bracket. In this paper it is shown that the deformation theory in the DGLA of graded derivations is not obstructed, but it is level-wise obstructed.


Differential graded Lie algebras Graded derivations Maurer-Cartan equation 


  1. 1.
    P. de Bartolomeis, A. Iordan, Deformations of Levi-flat structures in smooth manifolds. Commun. Contemp. Math. 16(2), 13500151–135001537 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    P. de Bartolomeis, A. Iordan, Deformations of Levi flat hypersurfaces in complex manifolds. Ann. Sci. Ec. Norm. Sup. 48(2), 281–311 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    P. de Bartolomeis, A. Iordan, Maurer-Cartan equation in the DGLA of graded derivations and deformations of Levi-flat hypersurfaces. Preprint arXiv:1506.06732 (2015)Google Scholar
  4. 4.
    A. Frölicher, A. Nijenhuis, Theory of vector valued differential forms. Part I. Derivations of the graded ring of differential forms, Indag. Math. 18, 338–359 (1956)Google Scholar
  5. 5.
    K. Kodaira, D. Spencer, Multifoliate structures. Ann. Math. 74(1), 52–100 (1961)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    P.W. Michor, Topics in Differential Geometry (AMS, Providence, RI, 2008)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, a part of Springer Nature 2017

Authors and Affiliations

  1. 1.Dipartimento di Matematica e Informatica “U. Dini”Università degli Studi di FirenzeFirenzeItaly
  2. 2.Institut de Mathématiques, UMR 7586 du CNRS, Case 247Université Pierre et Marie-CurieParis Cedex 05France

Personalised recommendations