Kähler-Einstein Metrics on \(\mathbb{Q}\)-Smoothable Fano Varieties, Their Moduli and Some Applications

  • Cristiano SpottiEmail author
Part of the Springer INdAM Series book series (SINDAMS, volume 21)


We survey recent results on the existence of Kähler-Einstein metrics on certain smoothable Fano varieties, focusing on the importance of such metrics in the construction of compact algebraic moduli spaces of K-polystable Fano varieties. Moreover, we give some applications and we discuss some natural problems which deserve future investigations.



This survey is an expanded version of a talk given at the INdAM meeting “Complex and Symplectic Geometry” held in Cortona, Arezzo (Italy), 12–18 June 2016. I would like to thank the organizers Daniele Angella, Paolo De Bartolomeis, Costantino Medori and Adriano Tomassini for the invitation, and Yuji Odaka for comments on a draft of this note. During the preparation of the survey, the author has been supported by the AUFF Starting Grant 24285.


  1. 1.
    V. Alexeev, Log canonical singularities and complete moduli of stable pairs (1996). arXiv:9608013Google Scholar
  2. 2.
    J. Alper, Good moduli spaces for Artin stacks. Ann. Inst. Fourier 63(6), 2349–2042 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    M. Anderson, Ricci curvature bounds and Einstein metrics on compact manifolds. J. Am. Math. Soc. 2(3), 455–490 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    C. Arezzo, F. Pacard, Blowing up and desingularizing constant scalar curvature Kähler metrics. Acta Math. 196(2), 179–228 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    C. Arezzo, C. Spotti, On cscK resolutions of conically singular cscK varieties. J. Funct. Anal. 271, 474–494 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    T. Aubin, Equations du type Monge-Ampère sur les variétés kählériennes compactes. J Bull. Sci. Math. (2) 102(1), 63–95 (1978)Google Scholar
  7. 7.
    S. Bando, T. Mabuchi, Uniqueness of Einstein Kähler metrics modulo connected group actions, in Algebraic Geometry, Sendai, 1985. Advanced Studies in Pure Mathematics, vol. 10 (North-Holland, Amsterdam, 1987), pp. 11–40Google Scholar
  8. 8.
    R. Berman, K-polystability of \(\mathbb{Q}\)-Fano varieties admitting Kähler-Einstein metrics. Invent. Math. 203, 973–1025 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    R. Berman, H. Guenancia, Kähler-Einstein metrics on stable varieties and log canonical pairs. Geom. Funct. Anal. 24(6), 683–1730 (2014)zbMATHCrossRefGoogle Scholar
  10. 10.
    R. Berman, S. Boucksom, M. Jonsson, A variational approach to the Yau-Tian-Donaldson (2015). arXiv:1509.04561Google Scholar
  11. 11.
    T. Broennle, PhD thesis, Imperial College, 2011Google Scholar
  12. 12.
    D. Burago, Y. Burago, S. Ivanov, A Course in Metric Geometry. Graduate Studies in Mathematics, vol. 33 (American Mathematical Society, Providence, RI, 2001)Google Scholar
  13. 13.
    E. Calabi, Métriques kählériennes et fibrés holomorphes. Ann. Sci. Ecole Norm. Sup. (4) 12, 269–294 (1979)Google Scholar
  14. 14.
    J. Cheeger, T.H. Colding, On the structure of spaces with Ricci curvature bounded below. I. J. Differ. Geom. 46(3), 406–480 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    I. Cheltsov, D. Kosta, Computing α-invariants of singular Del Pezzo surfaces. J. Geom. Anal. 24(2), 798–842 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    X.X. Chen, S. Donaldson, S. Sun, Kähler-Einstein metrics on Fano manifolds I, II, III. J. Am. Math. Soc. 28(1), 183–197; 199–234; 235–278 (2015)Google Scholar
  17. 17.
    X.X. Chen, S. Sun, B. Wang, Kähler-Ricci flow, Kähler-Einstein metric, and K-stability (2015). arXiv:1508.04397Google Scholar
  18. 18.
    V. Datar, G. Székelyhidi, Kähler-Einstein metrics along the smooth continuity method. Geom. Funct. Anal. 26(4), 975–1010 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    J.P. Demailly, Variational approach for complex Monge-Ampère equations and geometric applications (after Berman, Berndtsson, Boucksom, Eyssidieux, Guedj, Jonsson, Zeriahi, …). Seminaire Bourbaki (2016)Google Scholar
  20. 20.
    W-Y. Ding, G. Tian. Kähler-Einstein metrics and the generalized Futaki invariant. Invent. Math. 110, 315–335 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    S. Donaldson, Scalar curvature and stability of toric varieties. J. Differ. Geom. 62(2), 289–349 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    S. Donaldson, Lower bounds on the Calabi functional. J. Differ. Geom. 70(3), 453–472 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    S. Donaldson, Kähler-Einstein metrics and algebraic structures on limit spaces, in Surveys in Differential Geometry 2016. Advances in Geometry and Mathematical Physics, vol. 21 (Int. Press, Somerville, 2016), pp. 85–94Google Scholar
  24. 24.
    S. Donaldson, S. Sun, Gromov-Hausdorff limits of Kähler manifolds and algebraic geometry. Acta Math. 213, 63–106 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    S. Donaldson, S. Sun, Gromov-Hausdorff limits of Kähler manifolds and algebraic geometry, II. J. Differ. Geom. (to appear). Preprint. arXiv: 1507.05082Google Scholar
  26. 26.
    P. Eyssidieux, V. Guedj, A. Zeriahi, Singular Kähler-Einstein metrics. J. Am. Math. Soc. 22, 607–639 (2009)zbMATHCrossRefGoogle Scholar
  27. 27.
    J. Fine, J. Ross, A note on the positivity of CM line bundle. Int. Math. Res. Not. 2006, O95875 (2006)MathSciNetzbMATHGoogle Scholar
  28. 28.
    L. Foscolo, ALF gravitational instantons and collapsing Ricci-flat metrics on the K3 surface (2017). arXiv:1603.06315Google Scholar
  29. 29.
    A. Fujiki, G. Schumacher, The moduli space of extremal compact Kähler manifolds and generalized Weil-Petersson metrics. Publ. RIMS 26, 101–183 (1990)zbMATHCrossRefGoogle Scholar
  30. 30.
    K. Fujita, Optimal bounds for the volumes of Kähler-Einstein Fano manifolds (2015). arXiv:1508.04578Google Scholar
  31. 31.
    A. Futaki, An obstruction to the existence of Einstein-Kähler metrics. Invent. Math. 73, 437–443 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    M. Gross, V. Tosatti, Y. Zhang, Collapsing of abelian fibered Calabi-Yau manifolds. Duke Math. J. 162(3), 517–551 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    H. Guenancia, M. Paun, Conic singularities metrics with prescribed Ricci curvature: general cone angles along normal crossing divisors. J. Differ. Geom. 103(1), 15–57 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    D. Halpern-Leistner, On the structure of instability in moduli theory (2014). arXiv:1411.0627Google Scholar
  35. 35.
    H-J. Hein, A. Naber, Isolated Einstein singularities with singular tangent cones (in preparation)Google Scholar
  36. 36.
    H.-J. Hein, S. Sun, Calabi-Yau manifolds with isolated conical singularities (2016). arXiv:1607.02940v2Google Scholar
  37. 37.
    J. Heinloth, Hilbert-Mumford stability on algebraic stacks and applications to G-bundles on curves (2017). arXiv:1609.06058Google Scholar
  38. 38.
    T. Jeffers, R. Mazzeo, Y.A. Rubinstein, Kähler-Einstein metrics with edge singularities, (with an appendix by C. Li and Y.A. Rubinstein). Ann. Math. 183, 95–176 (2016)Google Scholar
  39. 39.
    N. Koiso, Einstein metrics and complex structures. Invent. Math. 73, 73–71 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    J. Kollár, Book in preparation. See personal web-site:
  41. 41.
    J. Kollár, Moduli of varieties of general type, in Handbook of Moduli, vol. II. Advanced Lectures in Mathematics, vol. 25 (International Press, Boston, 2013), pp. 131–167Google Scholar
  42. 42.
    J. Kollár, N. Shepherd-Barron, Threefolds and deformations of surface singularities. Invent. Math. 91(2), 299–338 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    M. Kontsevich, Y. Soibelman, Affine structures and non-archimedean analytic spaces, in The Unity of Mathematics. In Honor of the Ninetieth Birthday of I.M. Gelfand, ed. by I.P. Etingof, V. Retakh, I.M. Singer. Progress in Mathematics, vol. 244 (Birkhauser Boston, Inc., Boston, MA, 2006), pp. 312–385Google Scholar
  44. 44.
    C. LeBrun, Einstein metrics, harmonic forms, and symplectic four-manifolds. Ann. Glob. Anal. Geom. 48(1), 75–85 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    C. Li, Minimizing normalized volumes of valuations (2017). Preprint. arXiv:1511.08164Google Scholar
  46. 46.
    C. Li, Y.-C. Liu, Kähler-Einstein metrics and volume minimization (2017). Preprint. arXiv:1602.05094Google Scholar
  47. 47.
    C. Li, C. Xu, Special test configurations and K-stability of Fano varieties. Ann. Math. 180(1), 197–232 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    C. Li, X. Wang, C. Xu, Degeneration of Fano Kähler-Einstein manifolds (2014). arXiv:1411.0761Google Scholar
  49. 49.
    C. Li, X. Wang, C. Xu, Quasi-projectivity of the moduli space of smooth Kähler-Einstein Fano manifolds (2015). arXiv:1502.06532Google Scholar
  50. 50.
    T. Mabuchi, S. Mukai, Stability and Einstein-Kähler metric of a quartic del Pezzo surface, in Proceeding of 27th Taniguchi symposium 1990 (1993)zbMATHGoogle Scholar
  51. 51.
    Y. Matsushima, Sur la structure du group d’homéomorphismes analytiques d’une certaine varit́é káhlérienne. Nagoya Math. J. 11, 145–150 (1957)MathSciNetzbMATHCrossRefGoogle Scholar
  52. 52.
    Y. Odaka, The calabi conjecture and K-stability. Int. Math. Res. Not. 10, 2272–2288 (2012)MathSciNetzbMATHGoogle Scholar
  53. 53.
    Y. Odaka, The GIT stability of polarized varieties via discrepancy. Ann. Math. 177(2), 645–661 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  54. 54.
    Y. Odaka, On the moduli of Kähler-Einstein Fano manifolds, in Proceeding of Kinosaki Symposium 2013 (2014). Available at arXiv:1211.4833Google Scholar
  55. 55.
    Y. Odaka, Tropical compactifications via Gromov-Hausdorff collapse (2014). arXiv:1406.7772Google Scholar
  56. 56.
    Y. Odaka, Compact moduli spaces of Kähler-Einstein Fano varieties. Publ. Res. Inst. Math. Sci. 51(3), 549–565 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  57. 57.
    Y. Odaka, C. Spotti, S. Sun, Compact moduli space of Del Pezzo surfaces and Kähler-Einstein metrics. J. Differ. Geom. 102(1), 127–172 (2016)zbMATHCrossRefGoogle Scholar
  58. 58.
    S. Paul, G. Tian, CM stability and the generalized Futaki invariant II. Astérisque 328, 339–354 (2009)MathSciNetzbMATHGoogle Scholar
  59. 59.
    W.D. Ruan, Degeneration of Kähler-Einstein manifolds II: the toroidal case. Commun. Anal. Geom. 14(1), 201–216 (2006)zbMATHCrossRefGoogle Scholar
  60. 60.
    Y.-L. Shi, On the α-invariants of cubic surfaces with Eckardt points. Adv. Math. 225(3), 1285–1307 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  61. 61.
    C. Spotti, Degenerations of Kähler-Einstein Fano manifolds. PhD thesis, Imperial college London, 2012. Available at arXiv:1211.5334Google Scholar
  62. 62.
    C. Spotti, S. Sun, C.-J. Yao, Existence and deformations of Kähler-Einstein metrics on smoothable \(\mathbb{Q}\)-Fano varieties. Duke Math. J. 165(16), 3043–3083 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  63. 63.
    M. Stenzel, Ricci-flat metrics on the complexification of a compact rank one symmetric space. Manuscripta Math. 80, 151–163 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  64. 64.
    J. Stoppa, K-stability of constant scalar curvature Kaehler manifolds. Adv. Math. 221(4), 1397–1408 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  65. 65.
    Y. Suvaina, ALE Ricci-flat Kahler metrics and deformations of quotient surface singularities. Ann. Glob. Anal. Geom. 41(1), 109–123 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  66. 66.
    G. Szekelyhidi, The Kähler-Ricci flow and K-polystability. Am. J. Math. 132(4), 1077–1090 (2010)zbMATHCrossRefGoogle Scholar
  67. 67.
    R.P. Thomas, Notes on GIT and symplectic reduction for bundles and varieties, in Surveys in Differential Geometry, vol. 10, ed. by S.-T. Yau (International Press, Boston, 2006), pp. 221–273Google Scholar
  68. 68.
    G. Tian, On Calabi’s conjecture for complex surfaces with positive first Chern class. Invent. Math. 101, 101–172 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  69. 69.
    G. Tian, Degeneration of Kähler-Einstein manifolds I. Differential geometry: geometry in mathematical physics and related topics, in Proceedings of the Symposia in Pure Mathematics, Part 2 (1993), pp. 595–609Google Scholar
  70. 70.
    G. Tian, Kähler-Einstein metrics with positive scalar curvature. Invent. Math. 130(1), 1–37 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  71. 71.
    G. Tian, S.-T. Yau, Kähler-Einstein metrics on complex surfaces with c 1 > 0. Commun. Math. Phys. 112(1), 175–203 (1987)zbMATHCrossRefGoogle Scholar
  72. 72.
    S.-T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, I. Commun. Pure Appl. Math. 31, 339–411 (1978)zbMATHCrossRefGoogle Scholar
  73. 73.
    Y. Zhang, Collapsing of negative Kähler-Einstein metrics. Math. Res. Lett. 22(6), 1843–1869 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  74. 74.
    Y. Zhang, Completion of the moduli space for polarized Calabi-Yau manifolds. J. Differ. Geom. 103, 521–544 (2016)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, a part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Mathematics, Centre for Quantum Geometry of Moduli Spaces (QGM)Aarhus UniversityAarhus CDenmark

Personalised recommendations