Skip to main content

Fault Tolerant Control of LPV Systems Using Reconfigured Reference Model and Virtual Actuators

  • Chapter
  • First Online:
Advances in Gain-Scheduling and Fault Tolerant Control Techniques

Part of the book series: Springer Theses ((Springer Theses))

  • 648 Accesses

Abstract

The content of this chapter is based on the following works: [1] D. Rotondo, F. Nejjari, V. Puig. A virtual actuator and sensor approach for fault tolerant control of LPV systems. Journal of Process Control, 24(3):203–222, 2014.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the remaining of the theorem, and in its proof, the dependence of the matrices on the vector of scheduling parameters \(\theta (\tau )\) and the multiplicative faults \(f(\tau )\), or their estimation \(\hat{f}(\tau )\), will be omitted.

  2. 2.

    The pitch angle interval for searching the reference input values has been chosen with \(\underline{\alpha }_v = \alpha _v^0 - 0.2\) and \({\overline{\alpha }}_v = \alpha _v^0 +0.3\).

  3. 3.

    The state can be directly estimated from the available sensors, thus no observer has been designed.

References

  1. Rotondo D, Nejjari F, Puig V (2014) A virtual actuator and sensor approach for fault tolerant control of LPV systems. J Process Control 24(3):203–222

    Article  Google Scholar 

  2. Rotondo D, Nejjari F, Puig V, Blesa J (2015) Model reference FTC for LPV systems using virtual actuator and set-membership fault estimation. Int J Robust Nonlinear Control 25(5):735–760

    Article  MathSciNet  MATH  Google Scholar 

  3. Rotondo D, Puig V, Nejjari F, Romera J (2015) A fault-hiding approach for the switching quasi-LPV fault tolerant control of a four-wheeled omnidirectional mobile robot. IEEE Trans Ind Electron 62(6):3932–3944

    Google Scholar 

  4. Rotondo D, Nejjari F, Puig V (2016) Fault tolerant control of a PEM fuel cell using Takagi-Sugeno virtual actuators. J Process Control 45:12–29

    Article  Google Scholar 

  5. Steffen T (2005) Control reconfiguration of dynamical systems: linear approaches and structural tests. Lecture notes in control and information sciences, vol 230. Springer, Berlin

    Google Scholar 

  6. Lunze J, Steffen T (2006) Control reconfiguration after actuator failures using disturbance decoupling methods. IEEE Trans Autom Control 51(10):1590–1601

    Article  MathSciNet  MATH  Google Scholar 

  7. Montes de Oca S, Puig V, Witczak M, Dziekan L (2012) Fault-tolerant control strategy for actuator faults using LPV techniques: application to a two degree of freedom helicopter. Int J Appl Math Comput Sci 22(1):161–171

    MathSciNet  MATH  Google Scholar 

  8. Dziekan L, Witczak M, Korbicz J (2011) Active fault-tolerant control design for Takagi-Sugeno fuzzy systems. Bull Pol Acad Sci Tech Sci 59:93–102

    MATH  Google Scholar 

  9. Richter JH, Heemels WPMH, van de Wouw N, Lunze J (2011) Reconfigurable control of piecewise affine systems with actuator and sensor faults: stability and tracking. Automatica 47:678–691

    Article  MathSciNet  MATH  Google Scholar 

  10. Khosrowjerdi MJ, Barzegary S (2014) Fault tolerant control using virtual actuator for continuous-time Lipschitz nonlinear systems. Int J Robust Nonlinear Control 24(16):2597–2607

    Article  MathSciNet  MATH  Google Scholar 

  11. Richter JH (2011) Reconfigurable control of nonlinear dynamical systems - a fault-hiding approach. Springer, Heidelberg

    Book  MATH  Google Scholar 

  12. Do AL, Gomes da Silva JM, Sename O, Dugard L (2011) Control design for LPV systems with input saturation and state constraints: an application to a semi-active suspension. In: Proceedings of the 50th IEEE conference on decision and control (CDC), pp 3416–3421

    Google Scholar 

  13. Tarbouriech S, Garcia G, Gomes da Silva JM, Queinnec I (2011) Stability and stabilization of linear systems with saturating actuators. Springer, London

    Book  MATH  Google Scholar 

  14. Wu F, Grigoriadis KM, Packard A (2000) Anti-windup controller design using linear parameter-varying control methods. Int J Control 73(12):1104–1114

    Article  MathSciNet  MATH  Google Scholar 

  15. Abdullah A, Zribi M (2009) Model reference control of LPV systems. J Frankl Inst 346(9):854–871

    Article  MathSciNet  MATH  Google Scholar 

  16. Cauet S, Coirault P, Njeh M (2013) Diesel engine torque ripple reduction through LPV control in hybrid electric vehicle powertrain: experimental results. Control Eng Pract 21(12):1830–1840

    Article  Google Scholar 

  17. Aström KJ, Wittenmark B (2003) Computer controlled systems: theory and design. Prentice Hall, Englewood Cliffs

    Google Scholar 

  18. Sundarapandian V (2002) Global asymptotic stability of nonlinear cascade systems. Appl Math Lett 15(3):275–277

    Article  MathSciNet  MATH  Google Scholar 

  19. Schur J (1917) Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind. Journal für die reine und angewandte Mathematik 147:205–232

    MathSciNet  MATH  Google Scholar 

  20. Rahideh A, Shaheed MH (2007) Mathematical dynamic modelling of a twin-rotor multiple input-multiple output system. IMechE J Syst Control Eng 221(1):89–101

    Google Scholar 

  21. Rotondo D, Nejjari F, Puig V (2013) Quasi-LPV modeling, identification and control of a twin rotor MIMO system. Control Eng Pract 21(6):829–846

    Article  Google Scholar 

  22. Euler L (1768) Institutionum calculi integralis. Lipsiae et Berolini

    Google Scholar 

  23. Kwiatkowski A, Boll M-T, Werner H (2006) Automated generation and assessment of affine LPV models. In: Proceedings of the 45th IEEE conference on decision and control, pp 6690–6695

    Google Scholar 

  24. Löfberg J (2004) YALMIP: a toolbox for modeling and optimization in MATLAB. In: Proceedings of the CACSD conference, pp 284–289

    Google Scholar 

  25. Sturm JF (1999) Using sedumi 1.02, a matlab toolbox for optimization over symmetric cones. Optim Methods Softw 11(1–4):625–653

    Google Scholar 

  26. Oliveira HP, Sousa AJ, Moreira AP, Costa PJ (2009) Modeling and assessing of omni-directional robots with three and four wheels. In: Rodić AD (ed) Contemporary robotics - challenges and solutions. InTech

    Google Scholar 

  27. He X, Dimirovski GM, Zhao J (2010) Control of switched LPV systems using common Lyapunov function method and F-16 aircraft application. In: Proceedings of the IEEE international conference on systems, man and cybernatics, pp 386–392

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damiano Rotondo .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Rotondo, D. (2018). Fault Tolerant Control of LPV Systems Using Reconfigured Reference Model and Virtual Actuators. In: Advances in Gain-Scheduling and Fault Tolerant Control Techniques . Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-62902-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62902-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62901-8

  • Online ISBN: 978-3-319-62902-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics