Skip to main content

Background on Fault Tolerant Control

  • Chapter
  • First Online:

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Fault tolerant control (FTC) is the name given to all those techniques that are capable of maintaining the overall system stability and acceptable performance in the presence of faults. In other words, a closed-loop system which can tolerate component malfunctions, while maintaining desirable performance and stability properties is said to be a fault tolerant control system (FTCS). Starting from the 80s, FTC applications began to appear in the scientific literature, mainly motivated by aircraft flight control system designs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Eterno JS, Weiss JL, Looze DP, Willsky AS (1985) Design issues for fault tolerant-restructurable aircraft control. In: Proceedings of the 24th IEEE conference on decision and control, pp 900–905

    Google Scholar 

  2. Zhang Y, Jiang J (2008) Bibliographical review on reconfigurable fault-tolerant control systems. Annu Rev Control 32(2):229–252

    Article  Google Scholar 

  3. Blanke M, Kinnaert M, Lunze J, Staroswiecki M (2006) Diagnosis and fault-tolerant control. Springer, Berlin

    MATH  Google Scholar 

  4. Jiang J, Yu X (2012) Fault-tolerant control systems: a comparative study between active and passive approaches. Annu Rev Control 36(1):60–72

    Article  MathSciNet  Google Scholar 

  5. Jiang J (2005) Fault-tolerant control systems - an introductory overview. Acta Autom Sin 31(1):161–174

    Google Scholar 

  6. Ackermann J (1984) Robustness against sensor failures. Automatica 20(2):211–215

    Article  MATH  Google Scholar 

  7. Veillette RJ, Medanic JB, Perkins WR (1992) Design of reliable control systems. IEEE Trans Autom Control 37(3):290–304

    Article  MathSciNet  MATH  Google Scholar 

  8. Veillette RJ (1995) Reliable linear-quadratic state-feedback control. Automatica 31(1):137–143

    Article  MathSciNet  MATH  Google Scholar 

  9. Zhao Q, Jiang J (1998) Reliable state feedback control system design against actuator failures. Automatica 34(10):1267–1272

    Article  MATH  Google Scholar 

  10. Liang Y-W, Liaw D-C, Lee T-C (2000) Reliable control of nonlinear systems. IEEE Trans Autom Control 45(4):706–710

    Article  MathSciNet  MATH  Google Scholar 

  11. Yu X, Zhang Y (2015) Design of passive fault-tolerant flight controller against actuator failures. Chin J Aeronaut 28(1):180–190

    Article  MathSciNet  Google Scholar 

  12. Doyle JC, Glover K, Khargonekar PP, Francis BA (1989) State-space solutions to standard \(\cal{H}_2\) and \(\cal{H}_\infty \) control problems. IEEE Trans Autom Control 34(8):831–847

    Article  MathSciNet  MATH  Google Scholar 

  13. Yang G-H, Wang JL, Soh YC (2001) Reliable \(\cal{H}_\infty \) controller design for linear systems. Automatica 37(5):717–725

    Article  MathSciNet  MATH  Google Scholar 

  14. Wang H, Zhou B, Lim C-C, Lu R, Xue A (2014) \(\cal{H}_\infty \) fault-tolerant control of networked control systems with actuator failures. IET Control Theory Appl 8(12):1127–1136

    Article  MathSciNet  Google Scholar 

  15. Liao F, Wang JL, Yang G-H (2002) Reliable robust flight tracking control: an LMI approach. IEEE Trans Control Syst Technol 10(1):76–89

    Article  Google Scholar 

  16. Chen J, Patton RJ, Chen Z (1998) An LMI approach to fault-tolerant control of uncertain systems. In: Proceedings of the IEEE ISIC/CIRA/IRAS joint conference, pp 175–180

    Google Scholar 

  17. Yee J-S, Yang G-H, Wang JL (2001) Reliable output-feedback controller design for discrete-time linear systems: an iterative LMI approach. In: Proceedings of the 19th American control conference, pp 1035–1040

    Google Scholar 

  18. Looze DP, Weiss JL, Eterno JS, Barrett N (1985) An automatic redesign approach for restructurable control systems. IEEE Control Syst Mag 5(2):16–22

    Article  Google Scholar 

  19. Moerder DD, Halyo N, Broussard JR, Caglayan AK (1989) Application of precomputed control laws in a reconfigurable aircraft flight control system. J Guid Control Dyn 12(3):325–333

    Article  Google Scholar 

  20. McLean D, Aslam-Mir S (1994) Optimal integral control of trim in a reconfigurable flight control system. Control Eng Pract 2(3):453–459

    Article  Google Scholar 

  21. Gao Z, Antsaklis PJ (1991) Stability of the pseudo-inverse method for reconfigurable control systems. Int J Control 53(3):717–729

    Article  MathSciNet  MATH  Google Scholar 

  22. Staroswiecki M (2005) Fault-tolerant control: the pseudo-inverse method revisited. In: Proceedings of the 16th IFAC world congress, pp 1871–1876

    Google Scholar 

  23. Handelman DA, Stengel RF (1989) Combining expert system and analytic redundancy concepts for fault tolerance flight control. J Guid Control Dyn 12(1):39–45

    Article  Google Scholar 

  24. Farrell J, Berger T, Appleby BD (1993) Using learning techniques to accommodate unanticipated failures. IEEE Control Syst Mag 13(3):40–49

    Article  Google Scholar 

  25. Kwong WA, Passino KM, Laukoner EG, Yurkovich S (1995) Expert supervision of fuzzy learning systems for fault tolerant aircraft control. Proc IEEE 83(3):466–483

    Article  Google Scholar 

  26. Napolitano MR, Naylor S, Neppach C, Casdorph V (1995) On-line learning nonlinear direct neurocontrollers for restructurable control systems. J Guid Control Dyn 18(1):170–176

    Article  Google Scholar 

  27. Polycarpou MM, Vemuri AT (1995) Learning methodology for failure detection and accommodation. IEEE Control Syst Mag 15(3):16–24

    Article  Google Scholar 

  28. Balle P, Fischer M, Fulles D, Nelles O, Isermann R (1998) Integrated control, diagnosis and reconfiguration of a heat exchanger. IEEE Control Syst Mag 18(3):52–63

    Article  Google Scholar 

  29. Wang H, Wang Y (1999) Neural-network-based fault-tolerant control of unknown nonlinear systems. IEE Proc Control Theory Appl 146(5):389–398

    Article  Google Scholar 

  30. Diao Y, Passino KM (2002) Intelligent fault-tolerant control using adaptive and learning methods. Control Eng Pract 10(8):801–817

    Article  Google Scholar 

  31. Holmes M, Ray A (2001) Fuzzy damage-mitigating control of a fossil power plant. IEEE Trans Control Syst Technol 9(1):140–147

    Article  Google Scholar 

  32. Ganguli S, Marcos A, Balas G (2002) Reconfigurable LPV control design for Boeing 747-100/200 longitudinal axis. In: Proceedings of the 20th American control conference, pp 3612–3617

    Google Scholar 

  33. Shin J-Y, Wu NE, Belcastro C (2004) Adaptive linear parameter varying control synthesis for actuator failure. J Guid Control Dyn 27(5):787–794

    Article  Google Scholar 

  34. Rodrigues M, Theilliol D, Aberkane S, Sauter D (2007) Fault tolerant control design for polytopic LPV systems. Int J Appl Math Comput Sci 17(1):27–37

    Article  MathSciNet  MATH  Google Scholar 

  35. Tyler J Jr (1964) The characteristics of model-following systems as synthesized by optimal control. IEEE Trans Autom Control 9(4):485–498

    Article  Google Scholar 

  36. Stengel RF, Huang CY (1990) Restructurable control using proportional-integral implicit model following. J Guid Control Dyn 13(2):303–309

    Article  MATH  Google Scholar 

  37. Gao Z, Antsaklis PJ (1992) Reconfigurable control system design via perfect model following. Int J Control 56(4):783–798

    Article  MathSciNet  MATH  Google Scholar 

  38. Cimpoeşu EM, Ciubotaru BD, Popescu D (2011) Model following with output feedback for fault tolerant control. In: Proceedings of the 15th international conference on systems, control, and computing (ICSTCC), pp 1–6

    Google Scholar 

  39. Ahmed-Zaid F, Ioannou P, Gousman K, Rooney R (1991) Accommodation of failure in the F-16 aircraft using adaptive control. IEEE Control Syst Mag 11(1):73–78

    Article  Google Scholar 

  40. Bodson M, Groszkiewicz JE (1997) Multivariable adaptive algorithms for reconfigurable flight control. IEEE Trans Control Syst Technol 5(2):217–229

    Article  Google Scholar 

  41. Wise KA, Brinker JS, Calise AJ, Enns DF, Elgersma MR, Voulgaris P (1999) Direct adaptive reconfigurable flight control for a tailless advanced fighter aircraft. Int J Robust Nonlinear Control 9(14):999–1012

    Article  Google Scholar 

  42. Tao G, Joshi SM, Ma X (2001) Adaptive state feedback and tracking control of systems with actuator failures. IEEE Trans Autom Control 46(1):78–95

    Article  MathSciNet  MATH  Google Scholar 

  43. Tao G, Chen S, Joshi SM (2003) An adaptive actuator failure compensation controller using output feedback. IEEE Trans Autom Control 47(3):506–511

    Article  MathSciNet  MATH  Google Scholar 

  44. Maybeck PS, Stevens RD (1991) Reconfigurable flight control via multiple model adaptive control methods. IEEE Trans Aerosp Electron Syst 27(3):470–480

    Article  Google Scholar 

  45. Napolitano MR, Swaim RL (1991) New technique for aircraft flight control reconfiguration. J Guid Control Dyn 14(1):184–190

    Article  Google Scholar 

  46. Maybeck PS (1999) Multiple model adaptive algorithm for detecting and compensating sensor and actuator/surface failures in aircraft flight control systems. Int J Robust Nonlinear Control 9(14):1051–1070

    Article  Google Scholar 

  47. Zhang Y, Jiang J (2001) Integrated active fault-tolerant control using IMM approach. IEEE Trans Aerosp Electron Syst 37(4):1221–1235

    Article  Google Scholar 

  48. Guo Y-Y, Jiang B (2009) Multiple model-based adaptive reconfiguration control for actuator fault. Acta Autom Sin 35(11):1452–1458

    Article  MathSciNet  Google Scholar 

  49. Jacobson CA, Nett CN (1991) An integrated approach to controls and diagnostics using the four parameter controller. IEEE Control Syst Mag 11(6):22–28

    Article  Google Scholar 

  50. Stoustrup J, Grimble MJ, Niemann H (1997) Design of integrated systems for the control and detection of actuator/sensor faults. Sens Rev 17(2):138–149

    Article  Google Scholar 

  51. Musgrave JL, Guo T-H, Wong E, Duyar A (1996) Real-time accommodation of actuator faults on a reusable rocket engine. IEEE Trans Control Syst Technol 5(1):100–109

    Article  Google Scholar 

  52. Katebi MR, Grimble MJ (1999) Integrated control, guidance and diagnosis for reconfigurable autonomous underwater vehicle control. Int J Syst Sci 30(9):1021–1032

    Article  MATH  Google Scholar 

  53. Jiang J (1994) Design of reconfigurable control systems using eigenstructure assignments. Int J Control 59(2):395–410

    Article  MathSciNet  MATH  Google Scholar 

  54. Esna Ashari A, Khaki Sedigh A, Yazdanpanah MJ (2005) Reconfigurable control system design using eigenstructure assignment: static, dynamic and robust approaches. Int J Control 78(13):1005–1016

    Article  MathSciNet  Google Scholar 

  55. Ochi Y, Kanai K (1991) Design of restructurable flight control systems using feedback linearization. J Guid Control Dyn 14(5):903–911

    Article  Google Scholar 

  56. Ochi Y (1993) Application of feedback linearization method in a digital restructurable flight control system. J Guid Control Dyn 16(1):111–117

    Article  MathSciNet  Google Scholar 

  57. Doman DB, Ngo AD (2002) Dynamic inversion-based adaptive/reconfigurable control of the X-33 on ascent. J Guid Control Dyn 25(2):275–284

    Article  Google Scholar 

  58. Lee JH (2011) Model predictive control: review of the three decades of development. Int J Control Autom Syst 9(3):415–424

    Article  Google Scholar 

  59. Pachter M, Chandler PR, Mears M (1995) Reconfigurable tracking control with saturation. J Guid Control Dyn 18(5):1016–1022

    Article  Google Scholar 

  60. Maciejowski JM (1999) Modelling and predictive control: enabling technology for reconfiguration. Annu Rev Control 23:13–23

    Article  Google Scholar 

  61. Kale MM, Chipperfield AJ (2005) Stabilized MPC formulations for robust reconfigurable flight control. Control Eng Pract 13(6):771–788

    Article  Google Scholar 

  62. Ocampo-Martínez C, Puig V, Quevedo J, Ingimundarson A (2005) Fault tolerant model predictive control applied on the Barcelona sewer network. In: Proceedings of the 44th IEEE conference on decision and control and the European control conference, pp 1349–1354

    Google Scholar 

  63. Horowitz IM, Sidi M (1972) Synthesis of feedback systems with large plant ignorance for prescribed time domain tolerance. Int J Control 16(2):287–309

    Article  MATH  Google Scholar 

  64. Wu S-F, Grimble MJ, Wei W (1999) QFT based robust/fault tolerant flight control design for a remote pilotless vehicle. In: Proceedings of the 8th international conference on control applications (CCA), pp 57–62

    Google Scholar 

  65. Keating MS, Pachter M, Houpis CH (1997) Fault tolerant flight control system: QFT design. Int J Robust Nonlinear Control 7(6):551–559

    Article  MATH  Google Scholar 

  66. Siwakosit W, Hess RA (2001) Multi-input/multi-output reconfigurable flight control design. J Guid Control Dyn 24(6):1079–1088

    Article  Google Scholar 

  67. Niksefat N, Sepehri N (2002) A QFT fault-tolerant control for electrohydraulic positioning systems. IEEE Trans Control Syst Technol 10(4):626–632

    Article  Google Scholar 

  68. Edwards C, Spurgeon S (1998) Sliding mode control: theory and applications. CRC Press, London

    MATH  Google Scholar 

  69. Alwi H, Edwards C (2014) Fault tolerant longitudinal aircraft control using non-linear integral sliding mode. IET Control Theory Appl 8(17):1803–1814

    Article  MathSciNet  Google Scholar 

  70. Alwi H, Edwards C (2015) Sliding mode fault tolerant control of an octorotor using LPV based schemes. IET Control Theory Appl 9(4):618–636

    Article  MathSciNet  Google Scholar 

  71. Shtessel Y, Buffington J, Bauda S (1999) Multiple timescale flight control using reconfigurable sliding modes. J Guid Control Dyn 22(6):873–883

    Article  Google Scholar 

  72. Shtessel Y, Buffington J, Bauda S (2002) Tailless aircraft flight control using multiple time scale reconfigurable sliding modes. IEEE Trans Control Syst Technol 10(2):288–296

    Article  Google Scholar 

  73. Kim D, Kim Y (2000) Robust variable structure controller design for fault tolerant flight control. J Guid Control Dyn 23(3):430–437

    Article  MathSciNet  Google Scholar 

  74. Kim Y-W, Rizzoni G, Utkin VI (2001) Developing a fault tolerant power-train control system by integrating design of control and diagnostics. Int J Robust Nonlinear Control 11(11):1095–1114

    Article  MATH  Google Scholar 

  75. Osder S (1999) Practical view of redundancy management application and theory. J Guid Control Dyn 22(1):12–21

    Article  Google Scholar 

  76. Hammett RC (1999) Ultra-reliable real-time control systems - future trends. IEEE Aerosp Electron Syst Mag 14(8):31–36

    Article  Google Scholar 

  77. Jiang J, Zhao Q (2000) Design of reliable control systems possessing actuator redundancies. J Guid Control Dyn 23(4):709–718

    Article  Google Scholar 

  78. Wu NE, Klir GJ (2000) Optimal redundancy management in reconfigurable control systems based on normalized nonspecifity. Int J Syst - Sci 31(6):797–808

    Article  MATH  Google Scholar 

  79. Yetendje A, De Doná JA, Seron MM (2011) Multisensor fusion fault tolerant control. Automatica 47:1461–1466

    Article  MathSciNet  MATH  Google Scholar 

  80. Sun SL, Deng ZL (2004) Multisensor optimal information fusion kalman filter. Automatica 40:1017–1023

    Article  MathSciNet  MATH  Google Scholar 

  81. Hofman E, Haimovich H, Seron MM (2007) A systematic method to obtain ultimate bounds for perturbed systems. Int J Control 80(2):167–178

    Article  MathSciNet  MATH  Google Scholar 

  82. Kargar SM, Salahshoor K, Yazdanpanah MJ (2014) Integrated nonlinear model predictive fault tolerant control and multiple model based fault detection and diagnosis. Chem Eng Res Design 92:340–349

    Article  Google Scholar 

  83. Eberhardt RL, Ward D (1999) Indirect adaptive flight control system interaction. Int J Robust Nonlinear Control 9(14):1013–1031

    Article  Google Scholar 

  84. Zhang Y, Jiang J (2006) Issues on integration of fault diagnosis and reconfigurable control in active fault-tolerant control. In: Proceedings of the 6th IFAC symposium on fault detection, supervision and safety of technical processes, pp 1437–1448

    Google Scholar 

  85. Zhang Y, Jiang J (2003) Fault tolerant control system design with explicit consideration of performance degradation. IEEE Trans Aerosp Electron Syst 39(3):838–848

    Article  Google Scholar 

  86. Jiang J, Zhang Y (2006) Accepting performance degradation in fault-tolerant control system design. IEEE Trans Control Syst Technol 14(2):284–292

    Article  Google Scholar 

  87. Patton RJ (1993) Robustness issues in fault-tolerant control. In: Proceedings of the IEE colloquium on fault diagnosis and control system reconfiguration, pp 1–25

    Google Scholar 

  88. Mahmoud M, Jiang J, Zhang YM (2001) Stochastic stability analysis for fault tolerant control systems in the presence of noise. IEEE Trans Autom Control 46(11):1810–1815

    Article  MathSciNet  MATH  Google Scholar 

  89. Gao G, Wang J, Wang X (2015) Adaptive fault-tolerant control for feedback linearizable systems with an aircraft application. Int J Robust Nonlinear Control 25(9):1301–1326

    Article  MathSciNet  MATH  Google Scholar 

  90. Xu Y, Jiang B, Tao G, Gao Z (2011) Fault tolerant control for a class of nonlinear systems with application to near space vehicle. Circuits Syst Signal Process 30(3):655–672

    Article  MathSciNet  MATH  Google Scholar 

  91. Yoo SJ (2014) Neural-network-based decentralized fault-tolerant control for a class of nonlinear large-scale systems with unknown time-delayed interaction faults. J Frankl Inst 351(3):1615–1629

    Article  Google Scholar 

  92. Boskovic JD, Li S-M, Mehra RK (2001) Robust adaptive variable structure control of spacecraft under control input saturation. J Guid Control Dyn 24(1):14–22

    Article  Google Scholar 

  93. Mahmoud M, Jiang J, Zhang YM (2003) Stabilization of active fault tolerant control systems with imperfect fault detection and diagnosis. Stoch Anal Appl 21(3):673–701

    Article  MathSciNet  MATH  Google Scholar 

  94. Mariton M (1989) Detection delays, false alarm rates and the reconfiguration of control systems. Int J Control 49(3):981–992

    Article  MathSciNet  MATH  Google Scholar 

  95. Ward D, Monaco J, Bodson M (1998) Development and flight test of a parameter identification algorithm for reconfigurable control. J Guid Control Dyn 21(6):948–956

    Article  Google Scholar 

  96. Napolitano MR, Song Y, Seanor BA (2001) On-line parameter estimation for restructurable flight control systems. Aircr Des 4(1):19–50

    Article  Google Scholar 

  97. Song Y, Campa G, Napolitano M, Seanor B, Perhinschi MG (2002) Online parameter estimation techniques comparison within a fault tolerant flight control system. J Guid Control Dyn 25(3):528–537

    Article  Google Scholar 

  98. Davidson JB, Lullman FK (2001) Integrated reconfigurable control allocation. In: Proceedings of AIAA guidance, navigation, and control conference, pp 1–11

    Google Scholar 

  99. Zhang YM, Suresh VS, Theilliol D, Jiang B (2007) Reconfigurable control allocation against partial control effector faults in aircraft. In: Proceedings of the 3rd international conference on advances in vehicle control and safety, pp 151–156

    Google Scholar 

  100. Johansen TA, Fossen TI (2013) Control allocation - a survey. Automatica 49:1087–1103

    Article  MathSciNet  MATH  Google Scholar 

  101. Guler M, Clements S, Wills LM, Heck BS, Vachtsevanos GJ (2003) Transition management for reconfigurable hybrid control systems. IEEE Control Syst Mag 23(1):36–49

    Article  Google Scholar 

  102. Huo Z, Fang H (2007) Research on robust fault-tolerant control for networked control system with packet dropout. J Syst Eng Electron 18(1):76–82

    Article  MATH  Google Scholar 

  103. Sauter D, Boukhobza T, Hamelin F (2006) Decentralized and autonomous design for FDI/FTC of networked control systems. In: Proceedings of the 6th IFAC symposium on fault detection, supervision and safety of technical processes, pp 138–143

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damiano Rotondo .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Rotondo, D. (2018). Background on Fault Tolerant Control. In: Advances in Gain-Scheduling and Fault Tolerant Control Techniques . Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-62902-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62902-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62901-8

  • Online ISBN: 978-3-319-62902-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics