Skip to main content

Abstract

The bulge test geometry, sometimes called blister or burst test, has a long history of use for material property identification. Paper materials are thin with relatively low stiffness; in a bulge test paper materials will exhibit a combination of membrane and plate behavior. We have developed a VFM examination to identify the in-plane stiffnesses of this type of material by incorporating both membrane and plate internal work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Considine, J.M., Pierron, F., Turner, K.T., Lava, P., Tang, X.: Smoothly varying stiffness heterogeneity evaluated under uniaxial tensile stress. Strain (2017). doi:10.1111/str.12237

    Google Scholar 

  2. Considine, J.M., Pierron, F., Turner, K.T., Vahey, D.W.: General anisotropy identification of paperboard with virtual fields method. Exp. Mech. 54(8), 1395–1410 (2014)

    Article  Google Scholar 

  3. Small, M.K., Nix, W.D.: Analysis of the accuracy of the bulge test in determining the mechanical properties of thin films. J. Mater. Res. 7(06), 1553–1563 (1992)

    Article  Google Scholar 

  4. Vlassak, J.J., Nix, W.D.: A new bulge test technique for the determination of Young’s modulus and Poisson’s ratio of thin films. J. Mater. Res. 7(12), 3242–3249 (1992)

    Article  Google Scholar 

  5. Small, M.K., Daniels, B.J., Clemens, B.M., Nix, W.D.: The elastic biaxial modulus of Ag–Pd multilayered thin films measured using the bulge test. J. Mater. Res. 9(01), 25–30 (1994)

    Article  Google Scholar 

  6. Mitchell, J.S., Zorman, C.A., Kicher, T., Roy, S., Mehregany, M.: Examination of bulge test for determining residual stress, Youngs modulus, and Poissons ratio of 3C–SiC thin films. J. Aerospace Eng. 16(2), 46–54 (2003)

    Article  Google Scholar 

  7. Edwards, R.L., Coles, G., Sharpe, W.N.: Comparison of tensile and bulge tests for thin-film silicon nitride. Exp. Mech. 44(1), 49–54 (2004)

    Article  Google Scholar 

  8. Youssef, H., Ferrand, A., Calmon, P., Pons, P., Plana, R.: Methods to improve reliability of bulge test technique to extract mechanical properties of thin films. Microelectron. Reliab. 50(9), 1888–1893 (2010)

    Article  Google Scholar 

  9. Lu, J., Zhou, X., Raghavan, M.L.: Inverse method of stress analysis for cerebral aneurysms. Biomech. Model. Mechanobiol. 7(6), 477–486 (2007)

    Article  Google Scholar 

  10. Tonge, T.K., Atlan, L.S., Voo, L.M., Nguyen, T.D.: Full-field bulge test for planar anisotropic tissues: part I–experimental methods applied to human skin tissue. Acta Biomater. 9(4), 5913–5925 (2013)

    Article  Google Scholar 

  11. Davis, F.M., Luo, Y., Avril, S., Duprey, A., Lu, J.: Pointwise characterization of the elastic properties of planar soft tissues: application to ascending thoracic aneurysms. Biomech. Model. Mechanobiol. 14(5), 967–978 (2015)

    Article  Google Scholar 

  12. Davis, F.M., Luo, Y., Avril, S., Duprey, A., Lu, J.: Local mechanical properties of human ascending thoracic aneurysms. J. Mech. Behav. Biomed. Mater. 61, 235–249 (2016)

    Article  Google Scholar 

  13. Allen, M.G., Mehregany, M., Howe, R.T., Senturia, S.D.: Microfabricated structures for the in situ measurement of residual stress, Youngs modulus, and ultimate strain of thin films. Appl. Phys. Lett. 51(4), 241–243 (1987)

    Article  Google Scholar 

  14. Xu, D., Liechti, K.M., de Lumley-Woodyear, T.H.: Closed form nonlinear analysis of the peninsula blister test. J. Adhes. 82(8), 831–866 (2006)

    Article  Google Scholar 

  15. Xu, D., Liechti, K.M.: Bulge testing transparent thin films with moiré deflectometry. Exp. Mech. 50(2), 217–225 (2010)

    Article  Google Scholar 

  16. Machado, G., Favier, D., Chagnon, G.: Membrane curvatures and stress-strain full fields of axisymmetric bulge tests from 3D-DIC measurements. Theory and validation on virtual and experimental results. Exp. Mech. 52(7), 865–880 (2012)

    Google Scholar 

  17. Hsu, J.-S., Wen, B.-J., Chen, P.-Y.: Full-field deflection measurement of the flexible transparent sheets. Polym. Test. 31(8), 1105–1114 (2012)

    Article  Google Scholar 

  18. Zheng, D.W., Xu, Y.H., Tsai, Y.P., Tu, K.N., Patterson, P., Zhao, Q.-Z., Liu, B., Brongo, M.: Mechanical property measurement of thin polymeric-low dielectric-constant films using bulge testing method. Appl. Phys. Lett. 76(15), 2008–2010 (2000)

    Article  Google Scholar 

  19. Kalkman, A.J., Verbruggen, A.H., Janssen, G.C.A.M., Groen, F.H.: A novel bulge-testing setup for rectangular free-standing thin films. Rev. Sci. Instrum. 70(10), 4026–4031 (1999)

    Article  Google Scholar 

  20. Kalkman, A.J., Verbruggen, A.H., Janssen, G.C.A.M.: High-temperature bulge-test setup for mechanical testing of free-standing thin films. Rev. Sci. Instrum. 74(3), 1383–1385 (2003)

    Article  Google Scholar 

  21. Schweitzer, E.W., Göken, M.: In situ bulge testing in an atomic force microscope: microdeformation experiments of thin film membranes. J. Mater. Res. 22(10), 2902–2911 (2007)

    Article  Google Scholar 

  22. Pierron, F., Grédiac, M.: The Virtual Fields Method: Extracting Constitutive Mechanical Parameters from Full-Field Deformation Measurements. Springer, New York (2012)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John M. Considine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Considine, J.M., Tang, X. (2018). Use of Bulge Test Geometry for Material Property Identification. In: Baldi, A., Considine, J., Quinn, S., Balandraud, X. (eds) Residual Stress, Thermomechanics & Infrared Imaging, Hybrid Techniques and Inverse Problems, Volume 8. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-62899-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62899-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62898-1

  • Online ISBN: 978-3-319-62899-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics