Skip to main content

Quantitative Calorimetry and TSA in Case of Low Thermal Signal and Strong Spatial Gradients: Application to Glass Materials

  • Conference paper
  • First Online:
Residual Stress, Thermomechanics & Infrared Imaging, Hybrid Techniques and Inverse Problems, Volume 8

Abstract

In the present paper, the thermo-mechanical characterization of a holed glass sample under cyclic loading is carried out. Due to the low thermoelastic response obtained for such a material, the thermal movie has been preliminary filtered. The experimental stress field obtained from the Thermoelastic Stress Analysis (TSA) is well correlated to the finite element model. It validates both the use of this experimental technique to study the thermoelastic response of brittle materials and the filtering methodology. Finally, the corresponding calorimetric response has been determined by using a simplified formulation of the heat diffusion equation. This permits to quantify heat sources and to carry out energy balances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baker, L.R., Webber, J.M.B.: Thermoelastic stress analysis. Opt. Acta: Int. J. Opt. 29(4), 555–563 (1982)

    Article  Google Scholar 

  2. Dulieu-Barton, J.M., Stanley, P.: Development and application of thermoelastic stress analysis. journal of strain analysisfor engineering design. J. Strain Anal. Eng. Des. 33, 93–104 (1998)

    Article  Google Scholar 

  3. Chrysochoos, A., Licht, C., Peyroux, R.: Une modlisationthermomcanique unidimensionnelle de lapropagation d’un front de changement de phase dans un monocristal d’AMF. C. R. Mcanique. 331, 25–32 (2003)

    Article  MATH  Google Scholar 

  4. Delpueyo, D., Balandraud, X., Grédiac, M.: Calorimetric signature of the Portevin-Le Chatelier effect in an aluminumalloy from infrared thermography measurements and heat source reconstruction. Mater. Sci. Eng: Struct. Mater. Prop. Microstruct. Process. 651, 135–145 (2016)

    Article  Google Scholar 

  5. Chrysochoos, A.: Thermomechanical analysis of the cyclic behavior of materials. Procedia IUTAM. 4, 15–26 (2012)

    Article  Google Scholar 

  6. Dulieu-Barton, J.M., Fruehmann, R.K., Quinn, S.: A full-field stress based damage assessment approach for in-situ inspection of composite structures. Key Eng. Mater. 569–570, 3–10 (2013)

    Article  Google Scholar 

  7. Emery, T.R., Dulieu-Barton, J.M.: Thermoelastic stress analysis of damage mechanisms in composite materials. Compos. Pt. A-Appl. Sci. Manuf. 41, 1729–1742 (2010)

    Article  Google Scholar 

  8. Fruehmann, R.K., Wang, W., Dulieu-Barton, J.M., Quinn, S.: The application of thermoelastic stress analysis to evaluate debond damage in composite sandwich structures. In: Advances in experimental mechanics Viii, vol. 70, pp. 470–475. Applied Mechanics and Material, Trans Tech Publications, Switzerland (2011)

    Google Scholar 

  9. Wang, W., Martakos, G., Dulieu-Barton, J.M., Andreasen, J.H., Thomsen, O.T.: Fracture behaviour at tri-materialjunctions of crack stoppers in sandwich structures. Compos. Struct. 133, 818–833 (2015)

    Article  Google Scholar 

  10. Waugh, R.C., Dulieu-Barton, J.M., Quinn, S.: Modelling and evaluation of pulsed and pulse phase thermographythrough application of composite and metallic case studies. Ndt& E Int. 66, 52–66 (2014)

    Article  Google Scholar 

  11. Samaca Martinez, J.R., Le Cam, J.-B., Balandraud, X., Toussaint, E., Caillard, J.: Thermal and calorimetric effectsaccompanying the deformation of natural rubber. part 2: quantitative calorimetric analysis. Polymer. 54, 2727–2736 (2013)

    Article  Google Scholar 

  12. Samaca Martinez, J.R., Le Cam, J.-B., Balandraud, X., Toussaint, E., Caillard, J.: Thermal and calorimetric effectsaccompanying the deformation of natural rubber. part 1: thermal characterization. Polymer. 54, 2717–2726 (2013)

    Article  Google Scholar 

  13. Weichert, R., Schönert, K.: Heat generation at the crack tip of a moving crack. J. Mech. Phys. Solids. 26, 151–161 (1978)

    Article  MATH  Google Scholar 

  14. Pouvreau, C., Drissi-Habti, M., Michel, K., Bureau, B., Sangleboeuf, J.-C., Boussard-Pledel, C., Rouxel, T., Adam, J.-L.: Mechanical properties of a tasfiber: a preliminary study. J. Non-Cryst. Solids. 316(1), 131–137 (2003)

    Article  Google Scholar 

  15. Swain, M.V., Metras, J.C., Guillemet, C.G.: A deformation and fracture mechanics approach to the scoring and breaking of glass. J. Non-Cryst. Solids. 38–39(Part 1), 445–450 (1980)

    Article  Google Scholar 

  16. Guin, J.-P., Wiederhorn, S.M.: Crack growth threshold in soda lime silicate glass: role of hold-time. J. Non-Cryst. Solids. 316(1), 12–20 (2003)

    Article  Google Scholar 

  17. Le Cam, J.-B., Robin, E., Balandraud, X., Toussaint, E.: A new experimental route in thermomechanics of inorganic glasses using infrared thermography. J. Non-Cryst. Solids. 366, 64–69 (2013)

    Article  Google Scholar 

  18. Robin, E., Le Cam, J.-B., Balandraud, X., Toussaint, E., Brilland, L.: First steps towards thethermomechanical characterization of chalcogenide glass using quantitative infrared thermography. J. NonCryst. Solids. 391, 101–105 (2014)

    Article  Google Scholar 

  19. Corvec, G., Robin, E., Le Cam, J.-B., Sangleboeuf, J.-C., Lucas, P.: Improving spatio-temporal resolution of infraredimages to detect thermal activity of defect at the surface of inorganic glass. Infrared Phys. Technol. 77, 193–202 (2016)

    Article  Google Scholar 

  20. Nguyen, Q.S., Germain, P., Suquet, P.: Continuum thermodynamics. J. Appl. Sci. 50, 1010–1020 (1983)

    MATH  Google Scholar 

  21. Sathon, N., Dulieu-Barton, J.M.: Evaluation of sub-surface stresses using thermoelastic stress analysis. Appl. Mech. Mater. 7/8, 153–158 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

This work has received the financial support of AIS Scientific Grant from Rennes Métropole (2012), Mission of Resources and Skills Technology (MRCT) Grant from French National Center for Scientific Research (2012), Mission for Interdisciplinary(MI) Grant from French National Center for Scientific Research (2013), the Doctoral Politic Grant from Rennes 1 University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Corvec .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Corvec, G., Robin, E., Le Cam, JB., Lucas, P., Sangleboeuf, JC., Canevet, F. (2018). Quantitative Calorimetry and TSA in Case of Low Thermal Signal and Strong Spatial Gradients: Application to Glass Materials. In: Baldi, A., Considine, J., Quinn, S., Balandraud, X. (eds) Residual Stress, Thermomechanics & Infrared Imaging, Hybrid Techniques and Inverse Problems, Volume 8. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-62899-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62899-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62898-1

  • Online ISBN: 978-3-319-62899-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics