Skip to main content

Practical Stability Phase and Gain Margins Concept

  • Chapter
  • First Online:

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 115))

Abstract

A new concept of chattering characterization for the systems driven by finite-time convergent controllers (FTCC) in terms of practical stability margins is presented. Unmodeled dynamics of order two or more incite chattering in FTCC driven systems. In order to analyze the FTCC robustness to unmodeled dynamics the novel paradigm of Tolerance Limits (TL) is introduced to characterize the acceptable emerging chattering. Following this paradigm a new notions of Practical Stability Phase Margin (PSPM) and Practical Stability Gain Margin (PSGM) as a measure of robustness to cascade unmodeled dynamics is introduced. Specifically, PSPM and PSGM are defined as the values that have to be added to the phase and gain of dynamically perturbed system driven by FTCC so that the characteristics of the emerging chattering reach TL. For practical calculation of PSPM and PSGM, the Harmonic Balance (HB) method is employed and a numerical algorithm to compute Describing Functions (DFs) for families of FTCC (specifically, for nested, and quasi-continuous Higher Order Sliding Mode (HOSM) controllers) was proposed. A database of adequate DFs was developed. A numerical algorithm for solving HB equation using the Newton–Raphson method was suggested to obtain predicted chattering parameters. Finally, computational algorithms that identify PSPM and PSGM for the systems driven by FTCC were proposed. The algorithm of a cascade linear compensator design that corrected the FTCC, making the values of PSPM and PSGM to fit the prescribed quantities, was presented. In order to design the flight-certified FTCC for attitude for the F-16 jet fighter, the proposed technique was employed in a case study. The prescribed robustness to cascade unmodeled dynamics was achieved.

L. Fridman gratefully acknowledges the financial support from by Programa de Apoyo a Proyectos de Investigacion e Innovacion Tecnologica (UNAM) 113216, and DGAPA PASPA Program.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Utkin, V., Guldner, J., Shi, J.: Sliding Modes in Electromechanical Systems. Taylor and Francis, London (1999)

    Google Scholar 

  2. Shtessel, Y.B., Edwards, C., Fridman, L., Levant, A.: Sliding Mode Control and Observation. Springer, New York (2014)

    Book  Google Scholar 

  3. Boiko, I.: Discontinuous Control Systems: Frequency-Domain Analysis and Design. Birkhuser, Boston (2009)

    MATH  Google Scholar 

  4. Oza, H.B., Orlov, Y.V., Spurgeon, S.K.: Continuous uniform finite time stabilization of planar controllable systems. SIAM J. Control Optim. 53(3), 1154–1181 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bhat, S.P., Bernstein, D.S.: Geometric homogeneity with applications to finite-time stability. Math. Control Signals Syst. 17, 101–127 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Goddard.: Rules for the Design, Development, Verification, and Operation of Flight Systems: GSFC-STD-1000E (2009)

    Google Scholar 

  7. Boiko, I.M.: On relative degree, chattering and fractal nature of parasitic dynamics in sliding mode control. J. Franklin. Inst. 351(4), 1939–1952 (2014)

    Article  MathSciNet  Google Scholar 

  8. Utkin, V.I.: Sliding modes in control and optimization. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  9. Shtessel, Y.B., Lee, Y.-J.: New approach to chattering analysis in systems with sliding modes. In: Proceedings of the 35th IEEE Conference on Decision and Control, pp. 4014–4019, Dec (1996)

    Google Scholar 

  10. Lee, H., Utkin, V.: Chattering suppression methods in sliding mode control systems. Annu. Rev. Control 31, 179–188 (2007)

    Article  Google Scholar 

  11. Fridman, L.: An averaging approach to chattering. IEEE Trans. Autom. Control 46(8), 1260–1265 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fridman, L.: Singularly perturbed analysis of chattering in relay control systems. IEEE Trans. Autom. Control 47(12), 2079–2084 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Boiko, I.: Analysis of sliding mode in frequency domain. Int. J. Control 78(13), 969–981 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Boiko, I., Fridman, L.: Analysis of chattering in continuous sliding-mode controllers. IEEE Trans. Autom. Control 50(9), 1442–1446 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Levant, A.: Chattering analysis. IEEE Trans. Autom. Control 55(6), 1380–1389 (2010)

    Article  MathSciNet  Google Scholar 

  16. Levant, A., Fridman, L.: Accuracy of homogeneous sliding modes in the presence of fast actuators. IEEE Trans. Autom. Control 55(3), 810–814 (2010)

    Article  MathSciNet  Google Scholar 

  17. Pisano, A., Usai, E.: Sliding mode control: a survey with applications in math. Math. Comput. Simul. 81(5), 954–979 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Boiko, I., Fridman, L., Pisano, A., Usai, E.: Analysis of chattering in systems with second-order sliding-modes. IEEE Trans. Autom. Control 52(11), 2085–2102 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Boiko, L., Fridman, L., Pisano, A., Usai, E.: Performance analysis of second-order sliding-mode control systems with fast actuators. IEEE Trans. Autom. Control 52(6), 1053–1059 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Tsypkin, YaZ: Relay Control Systems. Cambridge University Press, England (1984)

    MATH  Google Scholar 

  21. Gelb, A., Vander Velde, W.E.: Multiple-input describing functions and nonlinear system design. Mc Graw-Hill, New York (1968)

    MATH  Google Scholar 

  22. Atherton, D.P.: Nonlinear Control Engineering-Describing Function Analysis and Designing. Van Nostrand Company Limited, UK (1975)

    Google Scholar 

  23. Levant, A.: Sliding order and sliding accuracy in sliding mode control. Int. J. Control 58, 1247–1263 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  24. Levant, A.: Robust exact differentiation via sliding mode technique. Automatica 34(3), 379–384 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  25. Boiko, I., Fridman, L., Castellanos, M.I.: Analysis of second-order sliding-mode algorithms in the frequency domain. IEEE Trans. Autom. Control 49(6), 946–950 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Levant, A.: High-order sliding modes: differentiation and output-feedback control. Int. J. Control 76(9–10), 924–941 (2003)

    Article  MATH  Google Scholar 

  27. Levant, A.: Quasi-continuous high-order sliding-mode controllers. IEEE Trans. Autom. Control 50(11), 1812–1816 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Schwartz, C., Gran, R.: Describing function analysis using matlab and simulink. IEEE Control Syst. Mag. 21(4), 19–26 (2001)

    Article  Google Scholar 

  29. Rosloniec, S.: Fundamental Numerical Methods for Electrical Engineering. Springer, Berlin (2008)

    MATH  Google Scholar 

  30. Rosales, A., Shtessel, Y., Fridman, L.: Analysis and design of systems driven by finite-time convergent controllers: practical stability approach. Int. J. Control (2017). doi:10.1080/00207179.2016.1255354

    Google Scholar 

  31. Rosales, A., Shtessel, Y., Fridman, L., Panathula, C.B.: Chattering analysis of HOSM controlled systems: frequency domain approach. IEEE Trans. Autom. Control (2017). doi:10.1109/TAC.2016.2619559

  32. Dorf, R.C., Bishop, R.H.: Modern Control Systems, 12th edn. Prentice Hall, USA (2011)

    MATH  Google Scholar 

  33. Shtessel, Y., Buffington, S., Banda, S.: Multiple time scale flight control using reconfigurable sliding modes. J. Guid. Control Dyn. 22(6), 873–883 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonid Fridman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Shtessel, Y., Fridman, L., Rosales, A., Panathula, C.B. (2018). Practical Stability Phase and Gain Margins Concept. In: Li, S., Yu, X., Fridman, L., Man, Z., Wang, X. (eds) Advances in Variable Structure Systems and Sliding Mode Control—Theory and Applications. Studies in Systems, Decision and Control, vol 115. Springer, Cham. https://doi.org/10.1007/978-3-319-62896-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62896-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62895-0

  • Online ISBN: 978-3-319-62896-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics