Skip to main content

Mapping Irregular Bodies

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Geoinformation and Cartography ((LNGC))

Abstract

Map projecting small, irregular bodies present in the Solar System is not a trivial task. The first 3D models attempting to reconstruct the Martian satellite Phobos occurred at the end of the 1980s. After that, an increasing number of high-resolution observations of asteroids, comets and planets’ satellites lead to the identification of specific standards used to both shape model the targets as well as to map project them. In this chapter, we will present an excursus of the early 3D model reconstruction of irregular bodies, as well as the shape modelling and the retrieval of illumination conditions methodology, and the specific 3D shape reconstruction of comet 67P/Churyumov–Gerasimenko.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Acton CH Jr (1996) Ancillary data services of NASA’s navigation and ancillary information facility. Planet Space Sci 44:65

    Article  Google Scholar 

  • Avanesov GA, Zhukov BS, Ziman YaL et al (1994) Televisionniye issledovaniya Fobosa. Nauka publishing, Moskva (in Russian)

    Google Scholar 

  • Bertaux JL, Abergel A (1986) Some physical characteristics of Halley’s nucleus as inferred from VEGA and Giotto pictures. In: ESLAB symposium on the exploration of Halley’s Comet, vol 2. ESA SP-250, pp 341–345

    Google Scholar 

  • Berthoud MG (2005) An equal-area map projection for irregular objects. Icarus 175(2):382–389

    Article  Google Scholar 

  • Demura H et al (2006) Pole and global shape of 25143 Itokawa. Science 312(5778):1347–1349

    Article  Google Scholar 

  • Duxbury TC (1974) Phobos: control network analysis. Icarus 23(2):290–299

    Article  Google Scholar 

  • Duxbury TC (1991) An analytic model for the Phobos surface. Planet Space Sci 39(1):355–376

    Article  Google Scholar 

  • Duxbury TC, Newburn RL, Brownlee DE (2004) Comet 81P/Wild 2 size, shape, and orientation. J Geophys Res: Planet 109:E12

    Article  Google Scholar 

  • El-Maarry MR et al (2015) Fractures on comet 67P/Churyumov-Gerasimenko observed by Rosetta/OSIRIS. Geophys Res Lett 42:5170–5178

    Article  Google Scholar 

  • Gaskell R, et al (2008) Gaskell Itokawa Shape Model V1.0. HAY-A-AMICA-5-ITOKAWASHAPE-V1.0. NASA Planetary Data System

    Google Scholar 

  • Gaskell RW (2011) Gaskell Phobos Shape Model V1.0. VO1-SA-VISA/VISB-5-PHOBOSSHAPE-V1.0. NASA Planetary Data System

    Google Scholar 

  • Hargitai H, Krasnopevtseva BV, Shingareva KB (eds) (2006) Moons of Mars. 1:100k. Eötvös Loránd University Cosmic Materials Space Research Group, Budapest-Moscow

    Google Scholar 

  • Hudson RS, Ostro SJ (1995) Shape and non-principal axis spin state of asteroid 4179 Toutatis. Science 270(5233):84

    Article  Google Scholar 

  • Ji J et al (2015) Chang’e-2 spacecraft observations of asteroid 4179 Toutatis. Proc Int Astron Union 10(S318):144–152

    Article  Google Scholar 

  • Jorda L et al (2016) The global shape, density and rotation of Comet 67P/Churyumov-Gerasimenko from preperihelion Rosetta/OSIRIS observations. Icarus 277:257–278

    Article  Google Scholar 

  • Kaasalainen M, Torppa J (2001) Optimization methods for asteroid lightcurve inversion: I. Shape determination. Icarus 153(1):24–36

    Article  Google Scholar 

  • Keller HU et al (2007) OSIRIS - the scientific camera system onboard Rosetta. Space Sci Rev 128:433

    Article  Google Scholar 

  • Keller HU et al (2010) E-type Asteroid (2867) Stein as imaged by OSIRIS on board Rosetta. Science 327:190–193

    Article  Google Scholar 

  • Lamy PL et al (2006) Hubble space telescope observations of the nucleus and inner coma of comet 67P/Churyumov-Gerasimenko. Astron Astrophys 458:669–678

    Article  Google Scholar 

  • Magrin S et al (2012) Spectrophotometry from Rosetta-OSIRIS images and comparison to ground based observations. Planet Space Sci 66:43–53

    Article  Google Scholar 

  • Massironi M et al (2012) Geological map and stratigraphy of asteroid 21 Lutetia. Planet Space Sci 66(1):125–136

    Article  Google Scholar 

  • Massironi M et al (2015) Two independent and primitive envelopes of the bilobate nucleus of comet 67P. Nature 526:402

    Article  Google Scholar 

  • Miller JK et al (2002) Determination of shape, gravity, and rotational state of asteroid 433 Eros. Icarus 155(1):3–17

    Article  Google Scholar 

  • Nyrtsov MV, Fleis ME, Borisov MM, Stooke PJ (2014) Jacobi conformal projection of the triaxial ellipsoid: new projection for mapping of small celestial bodies. In: Buchroithner M, Prechtel N, Burghardt D (eds) Cartography from Pole to Pole. Springer, Heidelberg, pp 235–246. https://doi.org/10.1007/978-3-642-32618-9_17

    Chapter  Google Scholar 

  • Ostro SJ (1993) Planetary radar astronomy. Rev Mod Phys 65(4):1235

    Article  Google Scholar 

  • Pajola M et al (2012) Spectrophotometric investigation of Phobos with the Rosetta OSIRIS-NAC camera and implications for its collisional capture. Mon Not R Astron Soc 427:3230–3243

    Article  Google Scholar 

  • Pajola M et al (2013) Phobos as a D-type asteroid, spectral modeling from 0.25 to 4.0 μm. Astrophys J 777(127):6

    Google Scholar 

  • Pajola M et al (2015) Size-frequency distribution of boulders ≥7 m on comet 67P/Churyumov-Gerasimenko. Astron Astrophys 583(A37):17

    Google Scholar 

  • Pajola M et al (2016) Aswan site on comet 67P/Churyumov-Gerasimenko: morphology, boulder evolution, and spectrophotometry. Astron Astrophys 592(A69):17

    Google Scholar 

  • Pajola M et al (2017) The pristine interior of comet 67P revealed by the combined Aswan outburst and cliff collapse. Nat Astron 1:0092

    Article  Google Scholar 

  • Pajola M et al (2018) Phobos MRO/CRISM visible and near-infrared (0.5–2.5 μm) spectral modeling. Planet Space Sci 154:63–71

    Article  Google Scholar 

  • Pommerol A et al (2015) OSIRIS observations of meter-sized exposures of H2O ice at the surface of 67P/Churyumov-Gerasimenko and interpretation using laboratory experiments. Astron Astrophys 583:A25

    Article  Google Scholar 

  • Preusker F et al (2015) Shape model, reference system definition, and cartographic mapping standards for comet 67P/Churyumov-Gerasimenko – Stereo-photogrammetric analysis of Rosetta/OSIRIS image data. Astron Astrophys 583(A33):19

    Google Scholar 

  • Preusker F et al (2017) The global meter-level shape model of comet 67P/Churyumov-Gerasimenko. Astron Astrophys 607(L1):5

    Google Scholar 

  • Robinson MS et al (2002) The geology of 433 Eros. Meteorit Planet Sci 37(12):1651–1684

    Article  Google Scholar 

  • Sierks H et al (2015) On the nucleus structure and activity of comet 67P/Churyumov-Gerasimenko. Science 347:1044

    Article  Google Scholar 

  • Simonelli DP et al (1993) The generation and use of numerical shape models for irregular solar system objects. Icarus 103(1):49–61

    Article  Google Scholar 

  • Stooke PJ (1988) Cartography of non-spherical worlds. Dissertation, University of Victoria

    Google Scholar 

  • Stooke PJ (1996) The surface of asteroid 951 Gaspra. Earth Moon Planet 75(1):53–75

    Article  Google Scholar 

  • Stooke P (2015) Stooke Small Bodies Maps V3.0. MULTI-SA-MULTI-6-STOOKEMAPS-V3.0. NASA Planetary Data System

    Google Scholar 

  • Stryk T, Stooke, PJ (2016) The surface of asteroid 5535 annefrank. In: 47th lunar and planetary science conference. Abstract no. 1148

    Google Scholar 

  • Stooke PJ, Keller CP (1990) Map projections for non-spherical worlds/the variable-radius map projections. Cartographica 27(2):82–100

    Article  Google Scholar 

  • Thomas P (1979) Surface features of Phobos and Deimos. Icarus 40(2):223–243

    Article  Google Scholar 

  • Thomas N, et al (2015) The morphological diversity of comet 67P/Churyumov-Gerasimenko. Science 347(6220), article id. aaa0440

    Google Scholar 

  • Thomas PC et al (1994) The shape of Gaspra. Icarus 107(1):23–36

    Article  Google Scholar 

  • Thomas PC, Black GJ, Nicholson PD (1995) Hyperion: Rotation, shape, and geology from Voyager images. Icarus 117(1):128–148

    Article  Google Scholar 

  • Thomas PC et al (1996) The shape of Ida. Icarus 120(1):20–32

    Article  Google Scholar 

  • Turner RJ (1978) A model of Phobos. Icarus 33(1):116–140

    Article  Google Scholar 

  • Vincent J-B et al (2015) Large heterogeneities in comet 67P as revealed by active pits from sinkhole collapse. Nature 523:63

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Nyrtsov, M.V., who provided additional text regarding Russian mapping.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip Stooke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stooke, P., Pajola, M. (2019). Mapping Irregular Bodies. In: Hargitai, H. (eds) Planetary Cartography and GIS. Lecture Notes in Geoinformation and Cartography. Springer, Cham. https://doi.org/10.1007/978-3-319-62849-3_8

Download citation

Publish with us

Policies and ethics