Skip to main content

Methods in Planetary Topographic Mapping: A Review

  • Chapter
  • First Online:
Planetary Cartography and GIS

Abstract

Elevation data can characterize geology, from global to local scales. For centuries, however, the only planetary topographic data were those of lunar peaks and craters. In the last few decades, several independent techniques have been developed to extract topographic information from diverse types of planetary datasets, which provide key information for the distinction and geologic interpretation of surface features. In this chapter, we discuss techniques to obtain, reconstruct, and visualize elevation data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aeschliman R (1998) Topographic map of the Guinevere Planitia of Venus. V10 M 30/240 RTK, USGS

    Google Scholar 

  • Aharonson O, Zuber MT, Smith, DE, Neumann, GA, Feldman WC, Prettyman TH (2004) Depth, distribution, and density of CO2 deposition on Mars. J Geophys Res 109(E05004). https://doi.org/10.1029/2003je002223

  • AMS (1963) Topographic Lunar Map. Army Map Service, Corps of Engineers, U.S. Army, Washington, D.C.

    Google Scholar 

  • Barker MK, Mazarico E, Neumann GA, Zuberc MT, Haruyama J, Smith DE (2016) A new lunar digital elevation model from the Lunar Orbiter Laser Altimeter and SELENE Terrain Camera. Icarus 273:346–355. https://doi.org/10.1016/j.icarus.2015.07.039

    Article  Google Scholar 

  • Barnett DN, Nimmo F, McKenzie D (2000) Elastic thickness estimates for venus using line of sight accelerations from Magellan cycle 5. Icarus 146:404–419

    Article  Google Scholar 

  • Barth CA, Hord CW (1971) Mariner ultraviolet spectrometer: topography and polar cap. Science 173:197–201

    Article  Google Scholar 

  • Batson RM (1973) Cartographic Products from the Mariner 9 Mission. J Geophys Res 78(20):4424–4435

    Article  Google Scholar 

  • Becker KJ et al (2016) First global digital elevation model of mercury. In: 47th lunar and planetary science conference abstract 2959

    Google Scholar 

  • Beyer RA, McEwen AS, Kirk RL (2003) Meter-scale slopes of candidate MER landing sites from point photoclinometry. J Geophys Res 108(E12):8085. https://doi.org/10.1029/2003JE002120

    Article  Google Scholar 

  • Blasius KR (1973) A study of Martian topography by analytic photogrammetry. J Geophys Res 78(20):4411–4423

    Article  Google Scholar 

  • Buchroithner M (2016) 3D visualisation of geodata: gimmick, hype or necessity? GIM Int. https://www.gim-international.com/content/article/3d-visualisation-of-geodata-gimmick-hype-or-necessity. Accessed 26 Feb 2018

  • Buchroithner MF, Gründemann T, Randolph KL, Habermann K (2005) Three in one: multiscale hardcopy depiction of the Mars surface in true-3D. Photogrammetric Eng Remote Sens Okt 71:1105–1108

    Google Scholar 

  • Buchroithner MF, Radig L (2017) The first depiction of two superimposed geographical surfaces in one autostereoscopic map: Antarctica’s topography and the southern ocean seafloor. Cartographic J World Mapp 1–10. http://dx.doi.org/10.1080/00087041.2017.1323153

  • Buchroithner M (eds) (2012) True-3D in Cartography: Autostereoscopic and Solid Visualization of Geodata. Lecture Notes in Geoinformation and Cartography, Springer, Heidelberg. https://doi.org/10.1007/978-3-642-12272-9

    Google Scholar 

  • Bue BD, Stepinski TF (2005) Automated classification of landforms on Mars. Comput Geosci https://doi.org/10.1016/j.cageo.2005.09.004

    Article  Google Scholar 

  • Burns KN, Speyerer EJ, Robinson MS, Tran T, Rosiek MR, Archinal BA, Howington-Kraus E, et al (2012) Digital Elevation Models And Derived Products from LROC NAC Stereo Observations.International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B4

    Google Scholar 

  • Cain DL, Kliore AJ, Seidel BL, Sykes MJ (1972) The shape of Mars from the Mariner 9 occultations Icarus 7:517–524

    Article  Google Scholar 

  • Cajori F (1929) History of determinations of the heights of mountains. Isis 12(3):482–514

    Article  Google Scholar 

  • Capanna C, Gesquière G, Jorda L, Lamy P, Vibert D (2013) Three-dimensional reconstruction using multiresolution photoclinometry by deformation. Vis Comput 29(6–8):825–835

    Article  Google Scholar 

  • Cavanaugh JF et al (2007) 2007 the mercury laser altimeter instrument for the MESSENGER mission. Space Sci Rev 131:451–480. https://doi.org/10.1007/s11214-007-9273-4

    Article  Google Scholar 

  • Chappelow JE, Sharpton VL (2002) An improved shadow measurement technique for constraining the morphology of simple impact craters. Meteorit Planetary Science 37:479–486

    Article  Google Scholar 

  • Chappelow JE (2013) Simple impact crater shape determination from shadows. Meteorit Planetary Sci 48(10):1863–1872. https://doi.org/10.1111/maps.12201

    Article  Google Scholar 

  • Christensen PR, Thorpe T, Fletcher Y (2006) Mars Global Surveyor Thermal Emission Spectrometer Data Processing User’s Guide. http://tes.asu.edu/mgst/document/process.pdf

  • Chugunov IG (1979) System of absolute elevations in the marginal zone of the Moon derived from stellar occultations. Moon Planets 21:277–281

    Article  Google Scholar 

  • Cintala MJ, Head JW, Mutch TA (1976) Martian crater depth/diameter relationships: comparison with the Moon and Mercury. In: Proceedings of 7th lunar science conference, pp 3575–3787

    Google Scholar 

  • Cook AC et al (1996) Clementine imagery: selenographic coverage for cartographic and scientific use. Planet Space Sci 44(10):1135–1148

    Article  Google Scholar 

  • Day T, Cook AC, Muller JP (1992) Automated digital topographic mapping techniques for Mars. In: International Archives of Photogrammetry and Remote Sensing, vol 29, no B4. American Society of Photogrammetry and Remote Sensing, Washington, DC, pp 801–808

    Google Scholar 

  • Dorrer E, Mayer H, Ostrovskiy A, Reznik S, Neukum G et al (2004) De- and re-shading of Mars express HRSC image data for homogenization of map relief shading. Int Arch Photogrammetry Remote Sens Spatial Inform Sci 35(B4):1299–1303

    Google Scholar 

  • Elgner S, Oberst J, Perry ME, Zuber MT, Robinson MS, Solomon SC (2012) Updates to Mercury limb topography from MESSENGER images. In: European planetary science congress, 23–28 September 2012, Madrid, Spanien

    Google Scholar 

  • Ermakov A, Zuber MT, Smith DE, Raymond CA, Gaskell RW, Preusker F (2014) Assessment of Systematic Differences Between the SPC and SPG Vesta Shape Models Derived from the Dawn Mission. AGU Fall Meeting Abstracts 41

    Google Scholar 

  • Ernst CM, Gaskell RW, Kahn EG, Barnouin OS, Roberts JH, Wilcomb KK (2015) Updated shape models of Phobos and Deimos from stereophotoclinometry. In: Lunar and planetary science conference, p 2753

    Google Scholar 

  • Esposito PB, Banerdt WB, Lindal GF, Sjogren WL, Slade MA, Bills BG, Smith DE, Balmino G (1992) Gravity and Topography. In: Keiffer HH, Jakosky BM, Snyder CW, Matthews MS (eds) Mars. The University of Arizona Press, Tucson, pp 209–249

    Google Scholar 

  • Franz J (1899) Die Figur des Mondes. Astron, Beobachtungen, Königsberg, Bd, p 38

    Google Scholar 

  • Frey HV, Roark JH, Shockey KM, Frey EL, Sakimoto SEH (2002) Ancient lowlands on Mars. Geophys Res Lett 29(10):1384. https://doi.org/10.1029/2001GL013832

    Article  Google Scholar 

  • Gaskell RW, Barnouin-Jha OS, Scheeres DJ, Konopliv AS, Mukai T, Abe S, Saito J et al (2008) Characterizing and navigating small bodies with imaging data. Meteorit. Planetary Sci 43(6):1049–1061

    Article  Google Scholar 

  • Gaskell RW (2011) Phobos Shape Model V1.0. NASA Planetary Data System 154

    Google Scholar 

  • Gläser P, Scholten F, De Rosa D, Marco Figuera R, Oberst J, Mazarico E, Neumann GA, Robinson MS (2014) Illumination conditions at the lunar south pole using high resolution digital terrain models from LOLA. Icarus 243:78–90. https://doi.org/10.1016/j.icarus.2014.08.013

    Article  Google Scholar 

  • Glines NH, Gulick VC (2014) Comparative study of Gullies in Kaiser Crater on Mars. In: 45th lunar and planetary science conference, #2926

    Google Scholar 

  • Golombek M, Grant J, Kipp D, Vasavada A, Kirk R, Fergason R, Bellutta P, Calef F, Larsen K, Katayama Y, Huertas A, Beyer R, Chen A, Parker T, Pollard B, Lee S, Sun Y, Hoover R, Sladek H, Grotzinger J, Welch R, Noe Dobrea E, Michalski J, Watkins M (2012) Selection of the Mars science laboratory landing site. Space Sci Rev 170:641–737. https://doi.org/10.1007/s11214-012-9916-y

    Article  Google Scholar 

  • GUGK (1988) 27 photomap sheets of Venus. Map series of Venus based on Venera 15 and Venera 16 observations. 1:5 M. GUGK SSSR, Moscow

    Google Scholar 

  • Gwinner K, Jaumann R, Hauber E, Hoffmann H, Heipke C, Oberst J, Neukum G, Ansan V, Bostelmann J, Dumke A, Elgner S, Erkeling G, Fueten F, Hiesinger H, Hoekzema NM, Kersten E, Loizeau D, Matz KD, McGuire PC, Mertens V, Michael G, Pasewaldt A, Pinet P, Preusker F, Reiss D, Roatsch T, Schmidt R, Scholten F, Spiegel M, Stesky R, Tirsch D, van Gasselt S, Walter S, Wählisch M, Willner K (2016) The high resolution stereo camera (HRSC) of Mars express and its approach to science analysis and mapping for Mars and its satellites. Planetary Space Sci 126:93–138. https://doi.org/10.1016/j.pss.2016.02.014

    Article  Google Scholar 

  • Harding DJ, Bufton JL, Frawley JJ (1994) Satellite laser altimetry of terrestrial topography: vertical accuracy as a function of surface slope, roughness, and cloud cover. IEEE Trans Geosci Remote Sens 32:329–339

    Article  Google Scholar 

  • Herr KC, Horn D, McAfee JM, Pimentek GC (1970) Martian topography from the Mariner 6 and 7 infrared spectra. Astron J 75(8):883–894

    Article  Google Scholar 

  • Hord CW (1972) Mariner 6 and 7 ultraviolet spectrometer experiment: photometry and topography of Mars. Icarus 16:253–280

    Article  Google Scholar 

  • Horn BKP (1981) Hill-shading and the reflectance map. Proc. IEEE 69(1):14–47. http://people.csail.mit.edu/bkph/papers/Hill-Shading.pdf

    Article  Google Scholar 

  • Inge JL, Bridges PM (1976) Applied photointerpretation for airbrush cartography. Photogrammetric Eng Remote Sens 42(6):749–760

    Google Scholar 

  • Jaumann R, Neukum G et al (2007) The high-resolution stereo camera (HRSC) experiment on Mars express: instrument aspects and experiment conduct from interplanetary cruise through the nominal mission. Planetary Space Sci (PSS) 55:928–952

    Article  Google Scholar 

  • Kirk R, Barrett J, Howington-Kraus E (1999) A Database of Viking Orbiter Image Coverage of Mars for Cartographic and Scientific Use LPS XXX #1857

    Google Scholar 

  • Kirk RL, Horwington-Kraus E, Rosiek M (2000) Recent planetary topographic mapping at the USGS, Flagstaff: Moon, Mars, Venus, and beyond. Int Arch Photogrammetry Remote Sens XXXIII(Part B4)

    Google Scholar 

  • Kirk RL, Soderblom LA, Lee EM (1992) Enhanced Visualization for Interpretation of Magellan Radar Data: Supplement to the Magellan Special Issue. J Geophys Res 97(El0):16371–16380

    Article  Google Scholar 

  • Kirk RL, Howington-Kraus E, Redding B, Galuszka D, Hare TM, Archinal BA, Soderblom LA, Barrett JM (2003a) High-resolution topomapping of candidate MER landing sites with Mars Orbiter Camera narrow-angle images. J Geophys Res 108(E12):8088. https://doi.org/10.1029/2003JE002131

    Article  Google Scholar 

  • Kirk RL, Barrett JM, Soderblom LA (2003a) Photoclinometry made simple. . .?, 2003b paper presented at ISPRS-ET Working Group IV/9 Workshop ‘‘Advances in Planetary Mapping 2003,’’Int. Soc. for Photogramm. and Remote Sens., Houston, Tex., 2003a. http://astrogeology.usgs.gov/Projects/ISPRS/MEETINGS/Houston2003/ abstracts/Kirk_isprs_mar03.pdf

  • Kleinhans MG (2005) Flow discharge and sediment transport models for estimating a minimum timescale of hydrological activity and channel and delta formation on Mars. JGR 110(E12003). https://doi.org/10.1029/2005JE002521

  • Knust C, Buchroithner M (2014) Principles and terminology of true-3D geovisualisation. Cartographic J World Mapp. 51(3):191–202. https://doi.org/10.1179/1743277413Y.0000000038

    Article  Google Scholar 

  • Leberl F, Maurice K (1922) Stereo-mapping of planet venus from Magellan SAR images: a status repoRT. In: ISPRS XXIX, pp 795–800

    Google Scholar 

  • Leberl F, Maurice K, Thomas J, Kober W (1991) radargrammetric measurements from the initial Magellan coverage of the planet venus. Photogrammetric Eng Remote Sens 57(l2):1561–1570

    Google Scholar 

  • Leberl FW (1993) How to extract topographic information from Magellan radar images. SPIE Vol. 1943 State-of-the-Art Mapping. https://doi.org/10.1117/12.157164

  • Li C, Ren X, et al (2015) A new global and high resolution topographic map product of the Moon from Chang’E-2 image data. In: LPSC Conf., LPI No. 1903, #1638

    Google Scholar 

  • Li R, Hwangbo J, Chen Y, Di K (2011) Rigorous photogrammetric processing of HiRISE stereo imagery for mars topographic mapping. IEEE Trans Geosci Remote Sens 49(7):2558–2572

    Article  Google Scholar 

  • Lohse V, Heipke C, Kirk RL (2006) Derivation of planetary topography using multi-image shape-from-shading. Planetary Space Sci 54:661–674

    Article  Google Scholar 

  • Lorenz RD et al (2013) A global topographic map of Titan. Icarus 225:367–377

    Article  Google Scholar 

  • Luedeling E, Siebert S, Buekert A (2007) Filling the voids in the SRTM elevation model — A TIN-based delta surface approach. ISPRS J Photogrammetry Remote Sens. https://doi.org/10.1016/j.isprs.jprs.2007.05.004

  • Margot JL, Campbell DB, Jurgens RF, Slade MA (1999) Topography of the lunar poles from radar interferometry: a survey of cold trap locations. Science 284:1658–1660

    Article  Google Scholar 

  • Mastrogiuseppe M et al (2014) The bathymetry of a Titan sea. Geophys Res Lett 41:1432–1437. https://doi.org/10.1002/2013GL058618

    Article  Google Scholar 

  • McEwen AS (1991) Photometric functions for photoclinometry and other applications. Icarus 92:298–311

    Article  Google Scholar 

  • McEwen AS (1996) A precise lunar photometric function (abs.). In: Lunar and Planetary Science, XXVII, Lunar and Planetary Institute, Houston, pp. 841–842

    Google Scholar 

  • McEwen AS, Eliason EM, Bergstrom JW, Bridges NT, Hansen CJ, Delamere WA, Grant JA, Gulick VC, Herkenhoff KE, Keszthelyi L, Kirk RL, Mellon MT, Squyres SW, Thomas N, Weitz CM (2007) Mars Reconnaissance Orbiter’s High Resolution Imaging Science Experiment (HiRISE). J Geophys Res 112, E05S02. https://doi.org/10.1029/2005JE002605

  • Moore JM et al (2016) The geology of pluto and charon through the eyes of new horizons. Science 351(6279):1284–1293. https://doi.org/10.1126/science.aad7055

    Article  Google Scholar 

  • Mukul M, Srivastana V, Mukul M (2015) Analysis of the accuracy of Shuttle Radar Topography Mission (SRTM) height models using international global navigation satellite system service (IGS) network. J Earth Syst Sci 124(6):1343–1357

    Article  Google Scholar 

  • Nefian AV, Alexandrov O, Kim T, Moratto Z, Beyer R (2013) Albedo reconstruction of the apollo metric camera zone. In: 44th Lunar and Planetary Science Conference, abs. 1649

    Google Scholar 

  • Neukum G, Jaumann R (2004) HRSC: the high resolution stereo camera of mars express. In: Wilson A, Chicarro A (eds) ESA Special Publication, pp 17–35

    Google Scholar 

  • Neumann GA (2011) Lunar Reconnaissance Orbiter Lunar Orbiter Laser Altimeter Reduced Data Record and Derived Products Software Interface Specification, version 2.42. http://imbrium.mit.edu/DOCUMENT/RDRSIS.PDF

  • Neumann GA, Rowlands DD, Lemoine FG, Smith DE, Zuber MT (2001) Crossover analysis of Mars Orbiter laser altimeter data. J Geophys Res 106(E10):23753–23768

    Article  Google Scholar 

  • Nimmo F, Parsons RA (2011) Long wavelength satellite topography from limb profiles: geophysical implications. In: 42nd LPSC 1523

    Google Scholar 

  • O’Hara R, Barnes D (2012) A new shape from shading technique with application to Mars Express HRSC images. ISPRS J Photogrammetry Remote Sens 67:27–34. https://doi.org/10.1016/j.isprsjprs.2011.07.004

    Article  Google Scholar 

  • Oberst J et al (2011) Radius and limb topography of Mercury obtained from images acquired during the MESSENGER flybys. Planet Space Sci. https://doi.org/10.1016/j.pss.2011.07.003

    Article  Google Scholar 

  • Öhman T (2013) A beginner’s guide to stereo-derived DEM production and analysis using ISIS, ASP, and ArcMap. http://www.lpi.usra.edu/lunar/tools/dems/Ohman_2013_ISIS-ASP-ArcMap_workflow.pdf

  • Okubo CH, Schultz RA, Stefanelli GS (2004) Gridding Mars orbiter laser altimeter data with GMT: effects of pixel size and interpolation methods on DEM integrity. Comput Geosci 30:59–72

    Article  Google Scholar 

  • Pappalardo RT, Reynolds SJ, Greeley R (1997) Extensional tilt blocks on Miranda: evidence for an upwelling origin of Arden Corona. J Geophys Res 102(E6):13369–13379

    Article  Google Scholar 

  • PDS (2008) PDS Standards Reference, Chapter 2. Cartographic Standards. Draft: v. 4.3, 12.10.08. https://pds.jpl.nasa.gov/documents/sr/stdref3.7/Chapter2_20081210_v4_3_final_rev.pdf

  • Perry ME et al (2011) Measurement of the radius of Mercury by radio occultation during the MESSENGER flybys. Planet Space Sci. https://doi.org/10.1016/j.pss.2011.07.022

    Article  Google Scholar 

  • Pettengill GH, Counselman CC, Rainville LP et al (1969) Radar measurements of martian topography. Astron J 74(3):461–482

    Article  Google Scholar 

  • Pettengill GH, Eliason E, Ford PG, Loriot GB, Masursky H, McGill GE (1980) Pioneer venus radar results: altimetry and surface properties. J Geophys Res 85(A13):8261–8270

    Article  Google Scholar 

  • Preusker F, Scholten F, Matz K-D, Roatsch T, Kersten E, Raymond CA, Russell CT (2014) Global shape of vesta from dawn FC stereo images. In: Lunar planetary science conference, Houston, TX, USA 2027

    Google Scholar 

  • Preusker F, Scholten F, Matz KD, Roatsch T, Willner K, Hviid SF, Knollenberg J, Jorda L, Gutiérrez PJ, Kührt E, Mottola S, A’Hearn MF, Thomas N, Sierks H, Barbieri C, Lamy P, Rodrigo R, Koschny D, Rickman H, Keller HU, Agarwal J, Barucci MA, Bertaux JL, Bertini I, Cremonese G, Da Deppo V, Davidsson B, Debei S, De Cecco M, Fornasier S, Fulle M, Groussin O, Güttler C, Ip WH, Kramm JR, Küppers M, Lara LM, Lazzarin M, Lopez Moreno JJ, Marzari F, Michalik H, Naletto G, Oklay N, Tubiana C, Vincent JB (2015) Shape model, reference system definition, and cartographic mapping standards for comet 67P/Churyumov-Gerasimenko—Stereo-photogrammetric analysis of Rosetta/OSIRIS image data⋆. A&A 583. https://doi.org/10.1051/0004-6361/201526349

    Article  Google Scholar 

  • Preusker F et al (2017a) The global meter-level shape model of comet 67P/Churyumov-Gerasimenko. Astronomy Astrophysica 607. https://doi.org/10.1051/0004-6361/201731798

    Article  Google Scholar 

  • Preusker F, Stark A, Oberst J, Matz K.-D, Gwinner K, Roatsch T, Watters TR (2017b) Toward high-resolution global topography of Mercury from MESSENGER orbital stereo imaging: A prototype model for the H6 (Kuiper) quadrangle. Planet Space Sci 142:26–37. https://doi.org/10.1016/j.pss.2017.04.012

    Article  Google Scholar 

  • Radebaugh J, Lorenz RD, Kirk RL, Lunine JI, Stofan ER, Lopes RMC, Wall SD, the Cassini Radar Team (2007) Mountains on Titan observed by Cassini Radar. Icarus 192(1):77–91

    Article  Google Scholar 

  • Rizvanov NG, Nefed’ev YA, Kibardina MI (2007) Research on selenodesy and dynamics of the moon in Kazan. Solar Syst Res 41(2):140–149

    Article  Google Scholar 

  • Roatsch T, Kersten E, Matz K-D, Preusker F, Scholten F, Jaumann R, Raymond CA, Russell CT (2016) High-resolution ceres high altitude mapping orbit atlas derived from dawn framing camera images. Planetary Space Sci (in press)

    Google Scholar 

  • Robinson MS, Brylow SM, Tschimmel M, Humm D, Lawrence SJ, Thomas PC, Denevi BW, Bowman-Cisneros E, Zerr J, Ravine MA, Caplinger MA, Ghaemi FT, Schaffner JA, Malin MC, Mahanti P, Bartels A, Anderson J, Tran TN, Eliason EM, McEwen AS, Turtle E, Jolliff BL, Hiesinger H (2010) Lunar Reconnaissance Orbiter Camera (LROC) Instrument overview. Space Sci Rev 150:81–124. https://doi.org/10.1007/s11214-010-9634-2

    Article  Google Scholar 

  • Rzhiga ON (1987) Venera-15 and -16 spacecraft—Images and maps of Venus. COSPAR, IAU, Plenary Meeting, 26th vol 7, no 12, pp 269–278

    Google Scholar 

  • Schenk P, Hargitai H, Wilson R, McEwen A, Thomas P (2001) The mountains of Io’ Global and geological perspectives from Voyager and Galileo. J Geophys Res 106(E12):33201–33222

    Article  Google Scholar 

  • Schenk P (2008) Cartographic and topographic mapping of the icy satellites of the outer solar system. In: ISPRS XXXVII, Commission IV, WG IV/7

    Google Scholar 

  • Schenk P (2010a) Global topographic mapping of saturn’s midsize icy satellites: system-wide thermal and impact effects. Amer. Astron. Soc., D.P.S. meeting 42, abstr. 9.16

    Google Scholar 

  • Schenk P (2010b) New Moons – First Global Topographic Maps of (Saturn’s) Icy Moons. http://stereomoons.blogspot.com/2010/11/new-moons.html

  • Scholten F, Oberst J, Matz K-D, Roatsch T, Wählisch M, Speyerer EJ, Robinson MS (2012) GLD100: the near-global lunar 100 m raster DTM from LROC WAC stereo image data. J Geophys Res 117:E00H17. https://doi.org/10.1029/2011je003926

    Article  Google Scholar 

  • Schröter JH (1791) Selenotopographische Fragmente, vol 1. Lilienthal, J.G. Rosenbusch, Univ. Buchdr

    Google Scholar 

  • Shan J, Yoon J, Lee DS, Kirk RL, Neumann GA, Acton CH (2005) Photogrammetric analysis of the mars global surveyor mapping data. Photogrammetric Eng Remote Sens 71:97–108

    Article  Google Scholar 

  • Shapiro II, Zisk SH, Rogers AEE, Slade MA, Thompson TW (1972) Lunar topography: global determination by Radar. Science 178:939–948

    Article  Google Scholar 

  • Shum CK et al (2012) Lunar topography model determined by integrating laser altimetry from multiple orbiters. LPS XLIII:2407

    Google Scholar 

  • Simonelli DP, Veverka J, McEwen AS (1997) Io: Galileo evidence for major variations in regolith properties. Geophys Res Lett 24:2475–2478

    Article  Google Scholar 

  • Smith DE, Zuber MT (1998) The relationship between MOLA northern hemisphere topography and the 6.1-Mbar atmospheric pressure surface of Mars. Geophys Res Lett 25(24):4397–4400

    Article  Google Scholar 

  • Smith DE, Zuber MT, Neumann GA, Lemonie FG (1997) Topography of the Moon from the Clementine lidar. J Gephys Res 102(E1):1591–1611

    Article  Google Scholar 

  • Smith DE, Zuber MT, Solomon SCRJ, Phillips JW, Head JB, Garvin WB, Banerdt DO, Muhleman GH, Pettengill GA, Neumann FG, Lemoine JB, Abshire O, Aharonson CD, Brown SA, Hauck AB, Ivanov PJ, McGovern HJ, Zwally TC Duxbury (1999) The global topography of Mars and implications for surface evolution. Science 284:1495–1503

    Article  Google Scholar 

  • Smith DE, Zuber MT, Frey HV, Garvin JB, Head JW, Muhleman DO, Pettengill GH, Phillips RJ, Solomon SC, Zwally HJ, Banerdt WB, Duxbury TC, Golombek MP, Lemoine FG, Neumann GA, Rowlands DD, Aharonson O, Ford PG, Ivanov AB, Johnson CL, McGovern PJ, Abshire JB, Afzal RS, Sun X (2001) Mars Orbiter Laser Altimeter—Experiment summary after the first year of global mapping of Mars. J Geophys Res 106(E10):23689–23722

    Article  Google Scholar 

  • Spudis PD, McGovern PJ, Kiefer WS (2013) Large shield volcanoes on the Moon. J Geophys Res Planets 118:1063–1081. https://doi.org/10.1002/jgre.20059

    Article  Google Scholar 

  • Stepinski TF, Mendenhall MP, Bue BD (2009) Machine cataloging of impact craters on Mars. Icarus 203. https://doi.org/10.1016/j.icarus.2009.04.026

    Article  Google Scholar 

  • Stiles BW, Hensley S, Gim Y, Bates DM, Kirk RL, Hayes A, Radebaugh J, Lorenz RD, Mitchell KL, Callahan PS, Zebker H, Johnson WTK, Wall SD, Lunine JI, Wood CA, Janssen M, Pelletier F, West RD, Veeramacheneni C, The Cassini RADAR Team (2009) Determining Titan surface topography from Cassini SAR data. Icarus 202:584–598

    Article  Google Scholar 

  • Tao Y, Muller J-P, Sidiropoulos P, Xiong S-T, Putri ARD, Walter SHG, Veitch-Michaelis J, Yershov V (2018) Massive stereo-based DTM production for Mars on cloud computers. Planetary Space Sci 154:30–58

    Article  Google Scholar 

  • Tapley BD, Chambers DP, Bettadpur S, Ries JC (2003) Large scale ocean circulation from the GRACE GGM01 Geoid Geophys Res Lett 30(22). https://doi.org/10.1029/2003gl018622

  • Thomas J, Kober W, Leberl F (1991) Multiple image SAR Shape-from-Shading. Photogrammetric Eng Remote Sens 57(1):51–59

    Google Scholar 

  • Thomas P, Davies M, Colvin T et al (1998) The shape of Io from Galileo limb measurements. Icarus 135:175–180

    Article  Google Scholar 

  • USGS (1984) Topographic map of Venus. VRM Planning Chart. Atlas of Venus. I-1562. V50 M 6/60RT Scale 1:50 M

    Google Scholar 

  • USGS (1989) Maps of Part of the Northern Hemisphere of Venus. Map I-2041. Miscellaneous Investigations Series. 1:15 M

    Google Scholar 

  • USGS (2003) Color-Coded Contour Map of Mars. Geologic investigations series I–2782

    Google Scholar 

  • USGS (2013) Stereo Processing of Planetary Stereo Imagery using ISIS3 and SOCET SET® aPrimer. https://astropedia.astrogeology.usgs.gov/download/Docs/Photogrammetry/PGF_Primer.pdf

  • USGS (2015) Stereo Processing of HiRISE Imagery Using SOCET SET® Astrogeology Science Center, USGS. ftp://pdsimage2.wr.usgs.gov/pub/pigpen/tutorials/SS4HIRISE_JULY2015/HiRISE_StereoProcessing_Tutorial_July_2015.pdf

  • USGS (2017a) Mimas Voyager Image Control Network (RAND)

    Google Scholar 

  • USGS (2017b) Control Networks. https://astrogeology.usgs.gov/maps/control-networks

  • van Diggelen J (1951) A photometric investigation of the slopes and heights of the ranges of hills in the maria of the Moon. Netherlands Astron Inst Bull 11:283–289

    Google Scholar 

  • Weatherall P, Marks KM, Jakobsson M, Schmitt T, Tani S, Arndt JE, Rovere M, Chayes D, Ferrini V, Wigley R (2015) A new digital bathymetric model of the world’s oceans. Earth Space Sci 2:331–345. https://doi.org/10.1002/2015EA000107

    Article  Google Scholar 

  • White OL, Schenk PM, Nimmo F et al (2014) A new stereo topographic map of Io: implications for geology from global to local scales. J Geophys Res Planets 119:1276–1301. https://doi.org/10.1002/2013JE004591

    Article  Google Scholar 

  • Willner K, Shi X, Oberst J (2014) Phobos’ shape and topography models. Planet Space Sci 102:51–59. https://doi.org/10.1016/j.pss.2013.12.006

    Article  Google Scholar 

  • Wöhler C (2004) Shape from shading under coplanar light sources. In: Rasmussen CE, Bülthoff HH, Giese MA, Schölkopf B (eds) Proceedings of the 26th DAGM symposium, pattern recognition, Tübingen. Springer, Heidelberg pp 278–285

    Google Scholar 

  • Wollenhaupt WR, Sjogren WL (1972) Apollo 16 Preliminary Science Report. NASA 30-1–30-5

    Google Scholar 

  • Wollenhaupt WR, Sjogren WL, Lingenfelter RE et al (1973) Apollo 17 Preliminary Science Report. NASA SP-330 33-41

    Google Scholar 

  • Wu SSC (1976) Mars synthetic topographic mapping. Dissertation, University of Arizona

    Google Scholar 

  • Wu SSC (1978) Mars synthetic topographic mapping. Icarus 22:417–440

    Article  Google Scholar 

  • Wu SSC, Schafer FJ, Jordan R et al (1972a) Photogrammetry of Apollo 16 Photography. Apollo 15 Preliminary Science Report. 25-36–25-48

    Google Scholar 

  • Wu SSC, Jordan R, Schafer FJ (1986) Mars global topographic map 1:15,000,000 scale, NASA Tech. Memo., TM-88383, 614-617

    Google Scholar 

  • Zebker HA, Gim Y, Callahan P, Hensley S, Lorenz R, The Cassini Radar Team (2009) Analysis determining titan surface topography from titan radar altimeter echoes. Icarus 200, 240–255

    Article  Google Scholar 

  • Zisk SH (1972) A new, earth-based radar technique for the measurement of lunar topography. Moon 4(3–4):296–306

    Article  Google Scholar 

  • Zuber MT, Smith DE, Cheng AF, Cole TD (1997) The NEAR laser ranging investigation. J Geophys Res 102:23761–23773

    Article  Google Scholar 

  • Zuber MT et al (1992) The mars observer laser altimeter investigation. J Geophys Res 97(E5):7781–7797

    Article  Google Scholar 

  • Zuber MT et al (2000) The Shape of 433 Eros from the NEAR-Shoemaker Laser Rangefinder Science 289, 2097–2101. https://doi.org/10.1126/science.289.5487.2097

    Article  Google Scholar 

  • Zuber MT, Smith DE (1996) Topographic mapping of the Moon. Int Arch Photogrammetry Remote Sens 31(B4):1011–1015

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to R. Kirk and T. Hare for the helpful discussions and suggestions during the planning and reviewing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrik Hargitai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hargitai, H., Willner, K., Buchroithner, M. (2019). Methods in Planetary Topographic Mapping: A Review. In: Hargitai, H. (eds) Planetary Cartography and GIS. Lecture Notes in Geoinformation and Cartography. Springer, Cham. https://doi.org/10.1007/978-3-319-62849-3_6

Download citation

Publish with us

Policies and ethics