Skip to main content

Participants and Initiatives in Planetary Cartography

  • Chapter
  • First Online:
Planetary Cartography and GIS

Part of the book series: Lecture Notes in Geoinformation and Cartography ((LNGC))

  • 1335 Accesses

Abstract

Planetary cartography forms an integral part of cartography and has found its manifestation in governmental activities, community efforts, professional organizations, and commercial activities. These activities substantiated with the revival of planetary exploration in the early 2000s when Europe visited the Moon for the first time, and the USA launched a number of exploration missions. With the success of Asian spacecraft missions to the Moon and Mars joining the global planetary exploration endeavor, planetary mapping is increasingly becoming a global collaborative effort, and planetary cartography being one of its main tools to accomplish the goals. This chapter introduces institutes and groups working in the field of planetary cartography and mapping. Some of them have a long history in planetary cartography, while others represent more recent efforts. Their activities are usually organized on a national level, but they are internationally related to each other through research cooperation and collaborative projects. This overview should provide a cross section covering main institutions as well as groups and initiatives. However, it does not qualify to be complete in listing all active organizations and groups.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For more information, see http://planetarymapping.wr.usgs.gov/.

  2. 2.

    http://astrogeology.usgs.gov/.

  3. 3.

    https://astrogeology.usgs.gov/facilities/mrctr/gis-tools.

  4. 4.

    https://astrogeology.usgs.gov/facilities/mrctr-gis-lab.

  5. 5.

    http://pilot.wr.usgs.gov/.

  6. 6.

    https://astrocloud.wr.usgs.gov/.

  7. 7.

    https://astrogeology.usgs.gov/tools/map-a-planet-2.

  8. 8.

    https://astrogeology.usgs.gov/facilities/mrctr/gis-tutorials.

  9. 9.

    https://astrogeology.usgs.gov/groups/planetary-data-workshop.

  10. 10.

    https://jmars.asu.edu/.

  11. 11.

    http://lunaserv.lroc.asu.edu/.

  12. 12.

    https://marstrek.jpl.nasa.gov/.

  13. 13.

    http://target.lroc.asu.edu/q3/.

  14. 14.

    https://messenger.quickmap.io/.

  15. 15.

    http://ciclops.org/maps/ and http://pds-imaging.jpl.nasa.gov/.

  16. 16.

    http://dawngis.dlr.de/atlas (Dawn GIS web page).

  17. 17.

    https://www.ucl.ac.uk/mssl/imaging/research.

  18. 18.

    http://www.planetek.it/eng/projects/pagis.

  19. 19.

    http://planetaryscience.fi/.

  20. 20.

    http://dmzone.org/wroona/.

  21. 21.

    http://cartsrv.mexlab.ru/geoportal.

  22. 22.

    http://www2.isprs.org/commissions/comm3/icwg-3-2.html.

  23. 23.

    http://planetarymapping.wordpress.com.

  24. 24.

    http://www.europlanet-2020-ri.eu/.

  25. 25.

    openplanetary.co.

  26. 26.

    whereonmars.co.

  27. 27.

    http://www.lpi.usra.edu/mapsit/.

  28. 28.

    https://planetarymapping.wr.usgs.gov/Page/view/Meetings.

  29. 29.

    In decreasing order of their impact factor in 2016.

References

  • Akins SW, Gaddis L et al (2009) Status of the PDS unified planetary coordinates database and the planetary image locator tool (pilot). In: 40th Lunar and planetary science conference (LPSC), LPI No. 1903, #2002

    Google Scholar 

  • Albertz J, Attwenger M et al (2005) HRSC on Mars express—photogrammetric and cartographic research. Photogramm Eng Remote Sens 71:1153–1160

    Article  Google Scholar 

  • Archinal BA (2014) The Need to Restart NASA Planetary Cartography Planning. NASA Planetary Science Division Presentation 21 October 2014

    Google Scholar 

  • Archinal BA, A’Hearn MF et al (2011) Report of the IAU working group on cartographic coordinates and rotational elements: 2009. Celest Mech Dyn Astron 109(2):101–135. https://doi.org/10.1007/s10569-010-9320-4

    Article  Google Scholar 

  • Aye K-M, Schwamb ME et al (2016) Analysis pipeline and results from the PlanetFour Citizen Science Project. In: 47th Lunar and planetary science conference (LPSC), LPI No. 1903, #3056

    Google Scholar 

  • Bailen MS, Sucharski RM et al (2013) Using the PDS planetary image locator tool (pilot) to identify and download spacecraft data for research. In: 44th Lunar and planetary science conference (LPSC), LPI No. 1903, #2246

    Google Scholar 

  • Baumann P (2010) The OGC web coverage processing service (WCPS) standard. Geoinformatica 14(4):447–479

    Article  Google Scholar 

  • Baumann P, Mazzetti P et al (2015) Big data analytics for earth sciences: the earthserver approach. Int J Digit Earth https://doi.org/10.1080/17538947.2014.1003106

    Article  Google Scholar 

  • Besse S, Vallat C et al (2017) ESA’s planetary science archive: preserve and present reliable scientific data sets. Planet Space Sci. https://doi.org/10.1016/j.pss.2017.07.013

    Article  Google Scholar 

  • Blaauw A (1994) History of the IAU: the birth and first half-century of the IAU. Kluwer Academic Publishers, Dordrecht. ISBN 0-7923-2979-1

    Book  Google Scholar 

  • Blagg MA, Müller K (1935) Named Lunar Formations, 196 p. International Astronomical Union, Percy Lund, Humphries and Co. Ltd., London

    Google Scholar 

  • Buchroithner MF (1999) Mars map: the first of the series of multilingual relief maps of terrestrial planets and their moon. In: Proceedings 19th International cartographic conference, Ottawa, Canada, 14–21 August 1999

    Google Scholar 

  • Burba GA (1984) Nomenklatura Detaley Relyefa Galileevych Sputnikov Jupitera. Nauka, Moskva

    Google Scholar 

  • Clever S (2014) LROC—Anaglyphen vom Mond: Erstellung und Visualisierung in einem Webmapping Projekt. Ba. thesis, Beuth Hochschule für Technik Berlin

    Google Scholar 

  • Cordis (2018) PLANMAP Project ID: 776276. https://cordis.europa.eu/project/rcn/212904_en.html

  • Dębniak K, Mège D, Gurgurewicz J (2017) Geomorphology of Ius Chasma, Valles Marineris, Mars. J Maps 13(2):260–269. https://doi.org/10.1080/17445647.2017.1296790

    Article  Google Scholar 

  • Demura H, Kobayashi S et al (2006) Pole and global shape of 25143 Itokawa. Sci 312. https://doi.org/10.1126/science.1126574

    Article  Google Scholar 

  • Deuchler C, Wählisch M et al (2004) Combining Mars data in GRASS GIS for geological mapping. In: International Society for Photogrammetry and Remote Sensing conference (ISPRS), Istanbul, Turkey, #455

    Google Scholar 

  • Erard E, Cecconi B et al (2014) Planetary science virtual observatory architecture. Astron Comput 7:71–80

    Article  Google Scholar 

  • Erard S, Cecconi B et al (2016) VESPA: developing the planetary science virtual observatory in H2020. In: European geoscience union conference (EGU), vol 18, #2016-17527

    Google Scholar 

  • ESA (2010) The Mars Planetary Mapping Pilot Project. Final report. http://www.gispla.net/docs/Final_PMPP_Report_Issued.pdf

  • Federal Register (1994) Executive Order 12906 of April 11, 1994, Coordinating Geographic Data Acquisition and Access: The National Spatial Data Infrastructure. Federal Register 59(71)

    Google Scholar 

  • FGDC (2006) Digital Cartographic Standard for Geologic Map Symbolization, Federal Geographic Data Committee, Document # FGDC-STD-013-2006

    Google Scholar 

  • Fleis ME, Nyrtsov MV, Borisov MM (2013) Cylindrical projection conformality of triaxial ellipsoid. Dokl Earth Sci 451(1):787–789

    Article  Google Scholar 

  • Gaddis L (2017) The Role of NASA’s Planetary Data System in the Planetary Spatial Data Infrastructure Initiative. In: American Geophysical Union (AGU) Fall Meeting, #225497

    Google Scholar 

  • Galluzzi V, Guzzetta L et al (2016) Geology of the Victoria quadrangle (H02). Mercury J Maps 12:227–238. https://doi.org/10.1080/17445647.2016.1193777

    Article  Google Scholar 

  • Gede M, Hargitai H (2015) Country movers—an extraterrestrial geographical application. In: Reyes NJ (eds) Cartography beyond the ordinary world, joint ICA symposium, pp 178–183

    Google Scholar 

  • Gede M, Hargitai H (2017) An online planetary exploration tool: “country movers”. Acta Astronaut. https://doi.org/10.1016/j.actaastro.2017.04.028

    Article  Google Scholar 

  • Gehrke S, Wählisch M et al (2006) Generation of topographic and thematic planetary maps using the software system “PIMap”. In: 37th Lunar and planetary science conference (LPSC), LPI No. 1903, #1322

    Google Scholar 

  • GUGK (1988) Map series of Venus based on Venera 16 and Venera 17 observations. GUGK SSSR

    Google Scholar 

  • Gwinner K, Jaumann R et al (2016) The high resolution stereo camera (HRSC) of Mars express and its approach to science analysis and mapping for Mars and its satellites. Planet Space Sci (PSS) 126:93–138

    Article  Google Scholar 

  • Hagerty JJ, Mouginis-Mark et al (2017) The NASA regional planetary image facility network: a globally distributed resource for the planetary science community. In: Planetary science vision 2050 workshop 2017, LPI Contribution No. 1989, #8063

    Google Scholar 

  • Hancher MD, Beyer R et al (2009) Visualizing Mars data and imagery with Google earth. In: 40th Lunar and planetary science conference (LPSC), LPI No. 1903, #2308

    Google Scholar 

  • Hare TM, Tanaka KL (2001) Planetary Interactive GIS-on-the-Web Analyzable Database (PIGWAD). In: 20th International Cartography conference (ICC), Beijing, China

    Google Scholar 

  • Hare TM, Akins SW et al (2013) Map projection web service for PDS images. In: 44th Lunar and planetary science conference (LPSC), LPI No. 1903, #2068

    Google Scholar 

  • Hare TM, Keszthelyi L et al (2014) Online planetary data and services at USGS astrogeology. In: 45th Lunar and planetary science conference (LPSC), LPI No. 1903, #2487

    Google Scholar 

  • Hare TM, Skinner JA et al (2015a) Planetary GIS at the U.S. geological survey astrogeology science center, 2nd planetary data workshop, held Flagstaff, Arizona, 8–11 June 2015. LPI No. 1846, 2015, #7005

    Google Scholar 

  • Hare TM, Hayward RK et al (2015b) Image mosaic and topographic map of the moon: U.S. geological survey scientific investigations map 3316, 2 sheets. https://doi.org/10.3133/sim3316

  • Hare TM, Pio Rossi A et al (2017) Interoperability in planetary research for geospatial data analysis. Planet Space Sci (PSS). https://doi.org/10.1016/j.pss.2017.04.004

    Article  Google Scholar 

  • Hargitai H (2016) Metacatalog of planetary surface features for multicriteria evaluation of surface evolution: the integrated planetary feature database. In: 48th Devision of Planetary Science (DPS)/11th European Planetary Science conference (EPSC), #426.23

    Google Scholar 

  • Hargitai H, Pitura M (2018) International catalog of planetary maps 1600–2017. In: 49th Lunar and planetary science conference (LPSC), LPI No. 1903, #2083

    Google Scholar 

  • Hargitai H, Shingareva KB (2011) Planetary nomenclature: a representation of human culture and alien landscapes. Advances in Cartography and Giscience. Lecture notes in geoinformation and cartography, 6, pp 275–288, https://doi.org/10.1007/978-3-642-19214-2_18

    Google Scholar 

  • Hargitai H, Gucsik A, Okumura T (2008) The new bilingual photomap of Itokawa. In: 3rd planetology seminar, Budapest, 4–5 September 2008. #C2

    Google Scholar 

  • Hargitai H, Li C et al (2014) Chinese and Russian language equivalents of the IAU gazetteer of planetary nomenclature: an overview of planetary toponym localization methods. Cartogr J. https://doi.org/10.1179/1743277413

  • Hargitai H, Gede M et al (2015) Multilingual narrative planetary maps for children. In: Robbi SC, Madureira Cruz CB, Leal de Menezes PM (eds) Cartography—Maps Connecting the World. Lecture notes in geoinformation and cartography, pp 17–30, Springer, Cham

    Google Scholar 

  • Hiesinger H, Ruesch O et al (2013) Geologic map of the northern hemisphere of Vesta based on DAWN FC images. In: 44th Lunar and planetary science conference (LPSC), LPI No. 1903, #2582

    Google Scholar 

  • Hiller K, Hauber E et al (1993) Digitale Kartenherstellung der Planetenbildkarten Olympus Mons/Planet Mars. Kartograph. Nachrichten, Heft 2 Kirschbaum Verlag, Bonn

    Google Scholar 

  • ISRO (2015) Mars orbiter mission (MOM) Mars atlas. Space Applications Centre. Indian Research Organisation (ISRO), Ahmedabad, India. https://www.issdc.gov.in/docs/mr1/Mars-atlas-MOM.pdf

  • Ivanov MA, Head JW (2011) Global geological map of Venus. Planet Space Sci (PSS), 59:1559–1600

    Article  Google Scholar 

  • Jaumann R, Neukum G et al (2007) The high-resolution stereo camera (HRSC) experiment on Mars express: instrument aspects and experiment conduct from interplanetary cruise through the nominal mission. Planet Space Sci (PSS), 55:928–952

    Article  Google Scholar 

  • Joy K, Crawford I et al (2011) Moon Zoo: citizen science in lunar exploration. Astron Geophys 52(2):2–10. https://doi.org/10.1111/j.1468-4004.2011.52210.x

    Article  Google Scholar 

  • Kanefsky B, Barlow NG, Gulick VC (2001) Can distributed volunteers accomplish massive data analysis tasks? In: 32th Lunar and planetary science conference (LPSC), LPI No. 1903, #1272

    Google Scholar 

  • Karachevtseva I, Kokhanov A et al (2015) Development of a new Phobos atlas based on Mars express image data. Planet Space Sci (PSS) 108:24–30

    Article  Google Scholar 

  • Karachevtseva IP, Kokhanov AA et al (2016) Modern methodology and new tools for planetary mapping. In: Gartner G, Jobst M, Huang H (eds) Progress in Cartography, pp 207–227, 480 p. Springer. https://doi.org/10.1007/978-3-319-19602-2

    Google Scholar 

  • Kim KJ, van Gasselt S et al (2016) Framework of Lunar landing site selection and resource analysis for the 2020 Korean Lunar mission. In: 47th Lunar and planetary science conference (LPSC), LPI No. 1903, #1706

    Google Scholar 

  • Kirk RL, Howington-Kraus E, Rosiek MR (2009) Build your own topographic model: a photogrammetry guest facility for planetary researchers. In: 40th Lunar and planetary science conference (LPSC), LPI No. 1903, #1414

    Google Scholar 

  • Knight LV, Steinbach TA (2008) Selecting an appropriate publication outlet: a comprehensive model of journal selection criteria for researchers in a broad range of academic disciplines. Int J Dr Stud 3:59–79

    Google Scholar 

  • Krasnopevtseva BV, Buchroithner MF, Shingareva KB, Leonenko SM, Fleis ME, Stoke Ph. (2007) The project of multilingual maps series on celestial bodies: current state and near future. In: Proceedings 23rd international cartographic conference (ICC), Moscow, 4–10 August 2007, 6 p. CD-ROM

    Google Scholar 

  • Laura JR, Hare TM et al (2017) Towards a planetary spatial data infrastructure. ISPRS Int J Geo-Inf 6:181

    Article  Google Scholar 

  • Lawrence SJ et al (2016) The mapping and planetary spatial infrastructure team (MAPSIT): addressing strategic planning needs for planetary cartography. In: 47th Lunar and planetary science conference (LPSC), LPI No. 1903, #1710

    Google Scholar 

  • Lehmann H, Scholten F et al (1997) Mapping a whole planet—the new topographic series 1:200 000 for Mars. In: 18th International cartographic conference (ICC), Stockholm, Sweden

    Google Scholar 

  • Li C, Liu J et al (2010a) The global image of the moon obtained by the Chang’E-1: data processing and lunar cartography. Sci China Earth Sci 53(8):1091–1102

    Article  Google Scholar 

  • Li C, Ren X et al (2010b) Laser altimetry data of Chang’E-1 and the global lunar DEM model. Sci China Earth Sci 53(11):1582–1593

    Article  Google Scholar 

  • Li C, Ren X et al (2015) A new global and high resolution topographic map product of the Moon from Chang’E-2 image data. In: 46th Lunar and planetary science conference (LPSC), LPI No. 1903, #1638

    Google Scholar 

  • Lipsky Yu N (ed) (1967) Atlas of the Far side of the Moon I-II. Nauka, Moskva

    Google Scholar 

  • Liu Z, Di K et al (2014) High precision landing site mapping and rover localization for Chang’3 mission. Sci China Phys Mech Astron 58(1):19601

    Google Scholar 

  • López I, Hansen VL (2015) Progress report on the geologic mapping of the 1:10 m Niobe map area, Venus. In: Abstracts of the annual meeting of planetary geologic mappers, HI 2015, Honolulu, 9–10

    Google Scholar 

  • Manaud N, Boix O et al (2015) Where on Mars? A web map visualisation of the ExoMars 2018 rover candidate landing sites. In: 10th European planetary science conference (EPSC), #2015-228

    Google Scholar 

  • Manaud N, Rossi AP et al (2016a) Summary and recommendations from the 2015 ESAC planetary GIS workshop. In: 47th Lunar and planetary science conference (LPSC), LPI No. 1903, #1387

    Google Scholar 

  • Manaud N, Rossi AP et al (2016b) The OpenPlanetary initiative. In: 48th Devision of Planetary Science (DPS)/11th European Planetary Science conference (EPSC), #2587836

    Google Scholar 

  • Manaud N, Rossi AP et al (2017) OpenPlanetaryMap: building the first open planetary mapping and Social platform for researchers, educators, storytellers, and the general public. In: 3rd planetary data workshop 2017, LPI Contribution No. 1986, #7024

    Google Scholar 

  • Marco Figuera R, Rossi AP et al (2015) Analyzing Lunar DTMs through web services with EarthServer/PlanetServer-2. In: ISPRS commission VI, WG VI/4 meeting, Berlin

    Google Scholar 

  • Marquardt S (2017) Space out with planets in Google Maps. https://www.blog.google/products/maps/space-out-planets-google-maps/

  • Maslonka C (2014) Bestimmung und Kartierung von Stationspunkten der Traverse der Apollo-17-Landestelle auf Basis von Lunar Reconnaissance Orbiter Camera Daten. Ma. thesis, Beuth Hochschule für Technik Berlin

    Google Scholar 

  • Mège D, Chicarro A et al (eds) (2014) MPSE 2014, Warsaw, 3–5 June 2014. http://dmzone.org/wroona/MPSE2014/AbstractBook_MPSE2014.pdf

  • Mewhinney M (2007) NASA maps the moon with Google. Astrogram, September https://www.nasa.gov/centers/ames/pdf/190041main_07_09astrogram.pdf

  • Muller J-P, Tao Y et al (2016) EU-FP7-iMARS: analysis of Mars multi-resolution images using auto-coregistration data mining and crowd source techniques: processed results—a first look. In: International archives of the photogrammetry, remote sensing and spatial information sciences, pp 453–458. https://doi.org/10.5194/isprs-archives-xli-b4-453-2016

  • Naß A, Hargitai H (this book) Cartography—Its role and interdisciplinary character as intersection in planetary science. In: Hargitai H, Wolak J (eds) Planetary cartography—concepts, tools, and methods. Lecture notes in geoinformation and cartography. Springer

    Google Scholar 

  • Nass A, van Gasselt S et al (2011) Implementation of cartographic symbols for planetary mapping in geographic information systems. Planet Space Sci 59:1255–1264. Special Issue: Planetary Mapping, Elsevier Ltd. https://doi.org/10.1016/j.pss.2010.08.022

    Article  Google Scholar 

  • Neugebauer G, Dorrer E (1996) Experimentelle Untersuchungen zur kartographischen Darstellung der Marsoberfläche. Kartographische Nachrichten, Heft 2 Kirschbaum Verlag, Bonn

    Google Scholar 

  • NSF (2012) A vision and strategy for science, engineering, and education: Cyberinfrastructure framework for the 21st century. NSF 12-113

    Google Scholar 

  • Nyrtsov MV, Fleis MM et al (2015) Equal-area projections of the triaxial ellipsoid: first time derivation and implementation of cylindrical and azimuthal projections for small solar system bodies. Cartogr J 52(2):114–124

    Article  Google Scholar 

  • Oberst J, Zakharov A, Schulz R (eds) (2014) Phobos (special issue). In: Planet Space Sci (PSS), vol. 102, 182 p. Elsevier

    Google Scholar 

  • Open University 2018 Geological mapping in Mercury’s southern hemisphere. https://goo.gl/SZ36fE

  • Pacifici A (2008) Geomorphological map of Ares Vallis, Mars; ASI planetary map series; map no. 1. Ital J Geosci 127(1):75–92 http://www.neogeo.unisi.it/IWSViewer/socgeol.php?id=B0404

    Google Scholar 

  • Parker T, Tanaka KL, Hirsch DD (eds.) (2001) Abstracts of the annual planetary geologic mappers meeting, 22–24 June 2000, with a section on field trip notes; geologic controls on select springs near Flagstaff, Arizona, by Bills, D.J.: U.S. Geological Survey Open-File Report 01–018, 53 p. https://pubs.usgs.gov/of/2001/of01-018/

  • Ping J, Huang Q et al (2009) Lunar topographic model CLTM-s01 from Chang’E-1 laser altimeter. Sci China Ser G: Phys Mech Astron 52(7):1105–1114

    Article  Google Scholar 

  • Ramsdale JD, Balme MR et al (2017) Grid-based mapping: a method for rapidly determining the spatial distributions of small features over very large areas. Planet Space Sci 140:49–61. https://doi.org/10.1016/j.pss.2017.04.002

    Article  Google Scholar 

  • Roatsch T, Jaumann R et al (2009) Cartographic mapping of the Icy satellites using ISS and VIMS data. In: Dougherty M, Esposito L, Krimigis S (eds) Saturn from Cassini-Huygens, pp 763–781. Springer

    Google Scholar 

  • Roatsch T, Kersten E et al (2013) High-resolution Vesta low altitude mapping orbit atlas derived from dawn framing camera images. Planet Space Sci (PSS) 85:293–298. https://doi.org/10.1016/j.pss.2013.06.024

    Article  Google Scholar 

  • Roatsch T, Kersten E et al (2016) High-resolution Ceres high altitude mapping orbit atlas derived from Dawn framing camera images. Planet Space Sci (PSS) 129:103–107. https://doi.org/10.1016/j.pss.2016.05.011

    Article  Google Scholar 

  • Robbins SJ, Antonenko I et al (2012) Cataloging the Moon with the CosmoQuest Moon mappers citizen science project. In: 43th Lunar and planetary science conference (LPSC), LPI No. 1903, #2901

    Google Scholar 

  • Rodionova JF (2000) Lunar maps and space achievements. In: Proceedings of the Fourth International Conference on the Exploration and Utilisation of the Moon. (ESA SP-462, September 2000), pp 11–14

    Google Scholar 

  • Rodionova Z, Berlyant A et al (2014) Maps of Mars compiled by students at Lomonosov Moscow State University In: Bandrova et al (eds) Thematic cartography for the society. Lecture notes in geoinformation and cartography. Springer International Publishing Switzerland. https://doi.org/10.1007/978-3-319-08180-9

    Google Scholar 

  • Rossi AP, Cecconi B et al (2015) Planetary GIS and EuroPlanet-RI H2020. In: 10th European planetary science conference (EPSC), #2015-178

    Google Scholar 

  • Rossi AP, Marco Figuera R et al (2016) Remote sensing data analytics for planetary science with planet/earthserver. In: European geoscience union (EGU), #2016-3996

    Google Scholar 

  • Saiger P, Wählisch M et al (2005) ArcGIS and GRASS GIS for planetary data. In: 1st Mars Express Science Conference

    Google Scholar 

  • Savinykh VP, Karachevtseva IP, Konopikhin AA (eds) (2015) The Phobos atlas Moscow. MIIGAiK, 220 p, 43 maps (In Russian)

    Google Scholar 

  • Scaioni M, Giommi P et al (2016) The ‘Moon Mapping’ project to promote cooperation between students of Italy and China. In: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol XLI-B6. https://doi.org/10.5194/isprsarchives-xli-b6-71-2016

    Article  Google Scholar 

  • Schaber GG (2005) The U.S. geological survey branch of astrogeology—a chronology of activities from conception through the end of project Apollo (1960–1973), USGS Open Report 2005-1190

    Google Scholar 

  • Sharaf O, Amiri S et al (2017) Emirates Mars mission (EMM) science overview. In: 48th Lunar and planetary science conference (LPSC), LPI No. 1903, #1992

    Google Scholar 

  • Shevchenko V, Rodionova Z, Michael G (2016) Lunar and Planetary Cartography in Russia. Springer. https://doi.org/10.1007/978-3-319-21039-1

    Book  Google Scholar 

  • Shingareva K, Krasnopevsteva B (2011) A new version of the multilingual glossary of planetary cartography. In: Advances in cartography and GIScience. Lecture notes in geoinformation and cartography, vol 2, pp 289–295

    Google Scholar 

  • Shingareva KB, Zimbelman J et al (2005) The realization of ICA commission projects on planetary cartography. Cartographica 40(4):105–114. https://doi.org/10.3138/3660-4078-55x1-3808

    Article  Google Scholar 

  • Shoemaker E, Hackman RJ (1961) Lunar Photogeologic Chart LPC 58. Copernicus, Prototype Chart, USGS, unpublished

    Google Scholar 

  • Skinner JA Jr (2015) The Challenges of Standardized Planetary Geologic Mapping, 2nd Planetary Data Workshop, #7071

    Google Scholar 

  • Tanaka KL, Skinner JA Jr, Hare TM (2011) Planetary Geologic Mapping Handbook—2011. USGS

    Google Scholar 

  • van Gasselt S, Nass A (2011) Planetary mapping: the datamodel’s perspective and GIS framework. Planet Space Sci (PSS) 59:1231–1242. Special Issue: Planetary Mapping, Elsevier Ltd., https://doi.org/10.1016/j.pss.2010.09.012

    Article  Google Scholar 

  • Wählisch M, Willner K et al (2010) A new topographic image atlas of Phobos. Earth Planet Sci Lett 294:547–553

    Article  Google Scholar 

  • Wählisch M, Stooke PJ et al (2014) Phobos and Deimos cartography. Planet Space Sci (PSS) 102:60–73

    Article  Google Scholar 

  • Williams D (2016) NASA’s planetary geologic mapping program: overview. In: The international archives of the photogrammetry, remote sensing and spatial information sciences, vol XLI-B4, pp 519–520. https://doi.org/10.5194/isprs-archives-xli-b4-519-2016

    Article  Google Scholar 

  • Willner K, Oberst J et al (2010) Phobos control point network, rotation, and shape. Earth Planet Sci Lett 294:541–546

    Article  Google Scholar 

  • Willner K, Shi X, Oberst J (2014) Phobos’ shape and topography models. Planet Space Sci (PSS) 102:51–59

    Article  Google Scholar 

  • Wu B, Li F et al (2014) Topographic modelling and analysis of the landing site of Chang’E-3 on the Moon. Earth Planet Sci Lett 405:257–273

    Article  Google Scholar 

  • Zastrow M (2015) Data visualization: science on the map. Nature 519:120

    Article  Google Scholar 

  • Zheng Y-C, Tsang KT et al (2012) First microwave map of the Moon with Chang’E-1 data: the role of local time in global imaging. Icarus 219:194–210. https://doi.org/10.1016/j.icarus.2012.02.017

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Trent Hare, Irina Karachevtseva, Lingli Mu, Maxim V. Nyrtsov, Jürgen Oberst, Teemu Öhmann, Zhanna Rodionova, and Marita Wählisch for their help in improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Naß .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Naß, A., Hargitai, H. (2019). Participants and Initiatives in Planetary Cartography. In: Hargitai, H. (eds) Planetary Cartography and GIS. Lecture Notes in Geoinformation and Cartography. Springer, Cham. https://doi.org/10.1007/978-3-319-62849-3_21

Download citation

Publish with us

Policies and ethics