Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 339 Accesses

Abstract

Understanding and manipulating the interaction of light with matter is one of the principal goals of modern science.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Photon exchange with the EM field modes also produces an energy shift, the Lamb shift.

  2. 2.

    By lattice we will always mean a periodic array, rather than simply the atoms being trapped in space.

References

  1. M. Scheibner, T. Schmidt, L. Worschech, A. Forchel, G. Bacher, T. Passow, D. Hommel, Superradiance of quantum dots. Nat. Phys. 3, 106 (2007)

    Article  Google Scholar 

  2. R. Röhlsberger, K. Schlage, B. Sahoo, S. Couet, R. Rüffer, Collective lamb shift in single-photon superradiance. Science 328, 1248 (2010)

    Article  ADS  MATH  Google Scholar 

  3. R.G. DeVoe, R.G. Brewer, Observation of superradiant and subradiant spontaneous emission of two trapped ions. Phys. Rev. Lett. 76, 2049 (1996)

    Article  ADS  Google Scholar 

  4. Z. Meir, O. Schwartz, E. Shahmoon, D. Oron, R. Ozeri, Cooperative lamb shift in a mesoscopic atomic array. Phys. Rev. Lett. 113, 193002 (2014)

    Article  ADS  Google Scholar 

  5. B. Casabone, K. Friebe, B. Brandstätter, K. Schüppert, R. Blatt, T.E. Northup, Enhanced quantum interface with collective ion-cavity coupling. Phys. Rev. Lett. 114, 023602 (2015)

    Article  ADS  Google Scholar 

  6. S. Inouye, A.P. Chikkatur, D.M. Stamper-Kurn, J. Stenger, D.E. Pritchard, W. Ketterle, Superradiant Rayleigh scattering from a Bose-Einstein condensate. Science 285, 571 (1999)

    Article  Google Scholar 

  7. Y. Yoshikawa, Y. Torii, T. Kuga, Superradiant light scattering from thermal atomic vapors. Phys. Rev. Lett. 94, 083602 (2005)

    Article  ADS  Google Scholar 

  8. J.A. Greenberg, D.J. Gauthier, Steady-state, cavityless, multimode superradiance in a cold vapor. Phys. Rev. A 86, 013823 (2012)

    Article  ADS  Google Scholar 

  9. A. Goban, C.-L. Hung, J.D. Hood, S.-P. Yu, J.A. Muniz, O. Painter, H.J. Kimble, Superradiance for atoms trapped along a photonic crystal waveguide. Phys. Rev. Lett. 115, 063601 (2015)

    Article  ADS  Google Scholar 

  10. W. Guerin, M.O. Araújo, R. Kaiser, Subradiance in a large cloud of cold atoms. Phys. Rev. Lett. 116, 083601 (2016)

    Article  ADS  Google Scholar 

  11. J. Keaveney, A. Sargsyan, U. Krohn, I.G. Hughes, D. Sarkisyan, C.S. Adams, Cooperative lamb shift in an atomic vapor layer of nanometer thickness. Phys. Rev. Lett. 108, 173601 (2012)

    Article  ADS  Google Scholar 

  12. M.T. Rouabah, M. Samoylova, R. Bachelard, P.W. Courteille, R. Kaiser, N. Piovella, Coherence effects in scattering order expansion of light by atomic clouds. J. Opt. Soc. Am. A 31, 1031 (2014)

    Article  ADS  Google Scholar 

  13. S.D. Jenkins, J. Ruostekoski, Controlled manipulation of light by cooperative response of atoms in an optical lattice. Phys. Rev. A 86, 031602 (2012)

    Article  ADS  Google Scholar 

  14. E. Akkermans, A. Gero, R. Kaiser, Photon localization and dicke superradiance in atomic gases. Phys. Rev. Lett. 101, 103602 (2008)

    Article  ADS  Google Scholar 

  15. S.E. Skipetrov, I.M. Sokolov, Magnetic-field-driven localization of light in a cold-atom gas. Phys. Rev. Lett. 114, 053902 (2015)

    Article  ADS  Google Scholar 

  16. L. Chomaz, L. Corman, T. Yefsah, R. Desbuquois, J. Dalibard, Absorption imaging of a quasi-two-dimensional gas: a multiple scattering analysis. New J. Phys. 14, 055001 (2012)

    Article  ADS  Google Scholar 

  17. J. Pellegrino, R. Bourgain, S. Jennewein, Y.R.P. Sortais, A. Browaeys, S.D. Jenkins, J. Ruostekoski, Observation of suppression of light scattering induced by dipole-dipole interactions in a cold-atom ensemble. Phys. Rev. Lett. 113, 133602 (2014)

    Google Scholar 

  18. K. Kemp, S.J. Roof, M.D. Havey, I.M. Sokolov, D.V. Kupriyanov, Cooperatively enhanced light transmission in cold atomic matter. arXiv:1410.2497

  19. M. Gross, S. Haroche, Superradiance: an essay on the theory of collective spontaneous emission. Phys. Rep. 93, 301 (1982)

    Article  ADS  Google Scholar 

  20. A.V. Andreev, V.I. Emel’yanov, Y.A. Il’inskii, Collective spontaneous emission (Dicke superradiance). Sov. Phys. Uspekhi 23, 493 (1980)

    Article  ADS  Google Scholar 

  21. R. Dicke, Coherence in spontaneous radiation processes. Phys. Rev. 93, 99 (1954)

    Article  ADS  MATH  Google Scholar 

  22. N.E. Rehler, J.H. Eberly, Superradiance. Phys. Rev. A 3, 1735 (1971)

    Article  ADS  Google Scholar 

  23. A.A. Svidzinsky, L. Yuan, M.O. Scully, Quantum amplification by superradiant emission of radiation. Phys. Rev. X 3, 041001 (2013)

    Google Scholar 

  24. R.H. Lehmberg, Radiation from an N-Atom system. I. General Formalism. Phys. Rev. A 2, 883 (1970)

    Google Scholar 

  25. R.H. Lehmberg, Radiation from an N-Atom system. II. Spontaneous emission from a pair of atoms. Phys. Rev. A 2, 889 (1970)

    Google Scholar 

  26. D. James, Frequency shifts in spontaneous emision from two interacting atoms. Phys. Rev. A 47, 1336 (1993)

    Article  ADS  Google Scholar 

  27. R. Jones, R. Saint, B.Olmos, Far-field resonance fluorescence from a dipole-interacting laser-driven cold atomic gas. J. phys. B: At. Mol. Opt. Phys. 50, 014004 (2017), http://stacks.iop.org/0953-4075/50/i=1/a=014004?key=crossref.cde247f64efc376f8172f26475011143

  28. O. Morice, Y. Castin, J. Dalibard, Refractive index of a dilute Bose gas. Phys. Rev. A 51, 3896 (1995)

    Article  ADS  Google Scholar 

  29. J. Ruostekoski, J. Javanainen, Quantum field theory of cooperative atom response: low light intensity. Phys. Rev. A 55, 513 (1997)

    Article  ADS  Google Scholar 

  30. J. Javanainen, J. Ruostekoski, B. Vestergaard, M.R. Francis, One-dimensional modeling of light propagation in dense and degenerate samples. Phys. Rev. A 59, 649 (1999)

    Article  ADS  Google Scholar 

  31. A.A. Svidzinsky, J.T. Chang, M.O. Scully, Cooperative spontaneous emission of N atoms: many-body eigenstates, the effect of virtual lamb shift processes, and analogy with radiation of N classical oscillators. Phys. Rev. A 81, 053821 (2010)

    Article  ADS  Google Scholar 

  32. G. Nienhuis, F. Schuller, Spontaneous emission and light scattering by atomic lattice models. J. Phys. B At. Mol. Phys. 20, 23 (1987)

    Article  ADS  Google Scholar 

  33. J. Javanainen, J. Ruostekoski, Y. Li, S.M. Yoo, Shifts of a resonance line in a dense atomic sample. Phys. Rev. Lett. 112, 113603 (2014)

    Article  ADS  Google Scholar 

  34. J. Javanainen, J. Ruostekoski, Light propagation beyond the mean-field theory of standard optics. Opt. Express 24, 993 (2016)

    Google Scholar 

  35. S. Jennewein, M. Besbes, N.J. Schilder, S.D. Jenkins, C. Sauvan, J. Ruostekoski, J.J. Greffet, Y.R.P. Sortais, A. Browaeys, Observation of the failure of lorentz local field theory in the optical response of dense and cold atomic systems. arXiv:1510.08041

  36. S.D. Jenkins, J. Ruostekoski, Theoretical formalism for collective electromagnetic response of discrete metamaterial systems. Phys. Rev. B 86, 085116 (2012)

    Article  ADS  Google Scholar 

  37. S.D. Jenkins, J. Ruostekoski, Metamaterial transparency induced by cooperative electromagnetic interactions. Phys. Rev. Lett. 111, 147401 (2013)

    Article  ADS  Google Scholar 

  38. S.D. Jenkins, J. Ruostekoski, Cooperative resonance linewidth narrowing in a planar metamaterial. New J. Phys. 14, 103003 (2012)

    Article  ADS  Google Scholar 

  39. B. Olmos, D. Yu, Y. Singh, F. Schreck, K. Bongs, I. Lesanovsky, Long-range interacting many-body systems with alkaline-earth-metal atoms. Phys. Rev. Lett. 110, 143602 (2013)

    Article  ADS  Google Scholar 

  40. S.L. Bromley, B. Zhu, M. Bishof, X. Zhang, T. Bothwell, J. Schachenmayer, T.L. Nicholson, R. Kaiser, S.F. Yelin, M.D. Lukin, A.M. Rey, J. Ye, Collective atomic scattering and motional effects in a dense coherent medium. Nat. Commun. 7, 11039 (2016)

    Article  ADS  Google Scholar 

  41. J.R. Ott, M. Wubs, P. Lodahl, N.A. Mortensen, R. Kaiser, Cooperative fluorescence from a strongly driven dilute cloud of atoms. Phys. Rev. A 87, 061801 (2013)

    Article  ADS  Google Scholar 

  42. L. Bellando, A. Gero, E. Akkermans, R. Kaiser, Cooperative effects and disorder: a scaling analysis of the spectrum of the effective atomic Hamiltonian. Phys. Rev. A 90, 063822 (2014)

    Article  ADS  Google Scholar 

  43. R.T. Sutherland, F. Robicheaux, Coherent forward broadening in cold atom clouds. Phys. Rev. A 93, 023407 (2016)

    Article  ADS  Google Scholar 

  44. S. Krämer, L. Ostermann, H. Ritsch, Optimized geometries for future generation optical lattice clocks. Europhys. Lett. 114, 14003 (2016)

    Article  ADS  Google Scholar 

  45. S. Krämer, H. Ritsch, Generalized mean-field approach to simulate the dynamics of large open spin ensembles with long range interactions. Eur. Phys. J. D 69, 282 (2015)

    Article  ADS  Google Scholar 

  46. R.J. Bettles, S.A. Gardiner, C.S. Adams, Cooperative ordering in lattices of interacting two-level dipoles. Phys. Rev. A 92, 063822 (2015)

    Article  ADS  Google Scholar 

  47. R.J. Bettles, S.A. Gardiner, C.S. Adams, Enhanced optical cross section via collective coupling of atomic dipoles in a 2D array. Phys. Rev. Lett. 116, 103602 (2016)

    Article  ADS  Google Scholar 

  48. R.J. Bettles, S.A. Gardiner, C.S. Adams, Cooperative eigenmodes and scattering in one-dimensional atomic arrays. Phys. Rev. A 94, 043844 (2016)

    Article  ADS  Google Scholar 

  49. A. Goetschy, S.E. Skipetrov, Non-Hermitian Euclidean random matrix theory. Phys. Rev. E 84, 011150 (2011)

    Article  ADS  MATH  Google Scholar 

  50. S.E. Skipetrov, A. Goetschy, Eigenvalue distributions of large Euclidean random matrices for waves in random media. J. Phys. A Math. Theor. 44, 065102 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. M. Samoylova, N. Piovella, R. Bachelard, P.W. Courteille, Microscopic theory of photonic band gaps in optical lattices. Opt. Commun. 312, 94 (2014)

    Article  ADS  Google Scholar 

  52. R. Friedberg, S.R. Hartmann, J.T. Manassah, Frequency shifts in emission and absorption by resonant systems ot two-level atoms. Phys. Rep. 7, 101 (1973)

    Article  ADS  Google Scholar 

  53. S. Ravets, H. Labuhn, D. Barredo, T. Lahaye, A. Browaeys, Measurement of the angular dependence of the dipole-dipole interaction between two individual Rydberg atoms at a Förster resonance. Phys. Rev. A 92, 020701 (2015)

    Article  ADS  Google Scholar 

  54. D. Barredo, H. Labuhn, S. Ravets, T. Lahaye, A. Browaeys, C.S. Adams, Coherent excitation transfer in a spin chain of three rydberg atoms. Phys. Rev. Lett. 114, 113002 (2015)

    Article  ADS  Google Scholar 

  55. F. Nogrette, H. Labuhn, S. Ravets, D. Barredo, L. Béguin, A. Vernier, T. Lahaye, A. Browaeys, Single-atom trapping in holographic 2D arrays of microtraps with arbitrary geometries. Phys. Rev. X 4, 021034 (2014)

    Google Scholar 

  56. W.S. Bakr, J.I. Gillen, A. Peng, S. Fölling, M. Greiner, A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice. Nature 462, 74 (2009)

    Article  ADS  Google Scholar 

  57. W.S. Bakr, P.M. Preiss, M.E. Tai, R. Ma, J. Simon, M. Greiner, Orbital excitation blockade and algorithmic cooling in quantum gases. Nature 480, 500 (2011)

    Article  ADS  Google Scholar 

  58. D.E. Chang, L. Jiang, A.V. Gorshkov, H.J. Kimble, Cavity QED with atomic mirrors. New J. Phys. 14, 063003 (2012)

    Article  ADS  Google Scholar 

  59. J. Ruostekoski, J. Javanainen, Emergence of correlated optics in one-dimensional waveguides for classical and quantum atomic gases. Phys. Rev. Lett. 117, 143602 (2016)

    Google Scholar 

  60. R.J. Thompson, G. Rempe, H.J. Kimble, Observation of normal-mode splitting for an atom in an optical cavity. Phys. Rev. Lett. 68, 1132 (1992)

    Article  ADS  Google Scholar 

  61. M. Brune, F. Schmidt-Kaler, A. Maali, J. Dreyer, E. Hagley, J.M. Raimond, S. Haroche, Quantum rabi oscillation: a direct test of field quantization in a cavity. Phys. Rev. Lett. 76, 1800 (1996)

    Article  ADS  MATH  Google Scholar 

  62. J. Eschner, C. Raab, F. Schmidt-Kaler, R. Blatt, Light interference from single atoms and their mirror images. Nature 413, 495 (2001)

    Article  ADS  Google Scholar 

  63. C. Stehle, C. Zimmermann, S. Slama, Cooperative coupling of ultracold atoms and surface plasmons. Nat. Phys. 10, 937 (2014)

    Article  Google Scholar 

  64. M.O. Scully, A.A. Svidzinsky, Physics. the super of superradiance. Science 325, 1510 (2009)

    Article  Google Scholar 

  65. B. Hopkins, A.N. Poddubny, A.E. Miroshnichenko, Y.S. Kivshar, Revisiting the physics of Fano resonances for nanoparticle oligomers. Phys. Rev. A 88, 053819 (2013)

    Article  ADS  Google Scholar 

  66. S.D. Emami, M.R.K. Soltanian, A. Attaran, H.A. Abdul-Rashid, R. Penny, M. Moghavvemi, S.W. Harun, H. Ahmad, W.S. Mohammed, Application of Fano resonance effects in optical antennas formed by regular clusters of nanospheres. Appl. Phys. A 118, 139 (2015)

    Article  ADS  Google Scholar 

  67. J. Keaveney, A. Sargsyan, U. Krohn, J. Gontcharov, I.G. Hughes, D. Sarkisyan, C.S. Adams, Optical transmission through a dipolar layer. arXiv:1109.3669

  68. M. Greiner, O. Mandel, T. Esslinger, T.W. Hänsch, I. Bloch, Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39 (2002)

    Article  ADS  Google Scholar 

  69. P. Windpassinger, K. Sengstock, Engineering novel optical lattices. Rep. Prog. Phys. 76, 086401 (2013)

    Article  ADS  Google Scholar 

  70. D. Peter, S. Müller, S. Wessel, H.P. Büchler, Anomalous behavior of spin systems with dipolar interactions. Phys. Rev. Lett. 109, 025303 (2012)

    Article  ADS  Google Scholar 

  71. B. Yan, S.A. Moses, B. Gadway, J.P. Covey, K.R.A. Hazzard, A.M. Rey, D.S. Jin, J. Ye, Observation of dipolar spin-exchange interactions with lattice-confined polar molecules. Nature 501, 521 (2013)

    Article  ADS  Google Scholar 

  72. C. Weitenberg, M. Endres, J.F. Sherson, M. Cheneau, P. Schauß, T. Fukuhara, I. Bloch, S. Kuhr, Single-spin addressing in an atomic Mott insulator. Nature 471, 319 (2011)

    Article  ADS  Google Scholar 

  73. A. Micheli, G.K. Brennen, P. Zoller, A toolbox for lattice-spin models with polar molecules. Nat. Phys. 2, 341 (2006)

    Article  Google Scholar 

  74. A. González-Tudela, C.L. Hung, D.E. Chang, J.I. Cirac, H.J. Kimble, Subwavelength vacuum lattices and atom-atom interactions in two-dimensional photonic crystals. Nat. Photonics 9, 320 (2015)

    Article  ADS  Google Scholar 

  75. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, H. Giessen, Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nat. Mater. 8, 758 (2009)

    Article  ADS  Google Scholar 

  76. B. Luk’yanchuk, N.I. Zheludev, S.A. Maier, N.J. Halas, P. Nordlander, H. Giessen, C.T. Chong, The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater. 9, 707 (2010)

    Article  ADS  Google Scholar 

  77. V.A. Fedotov, N. Papasimakis, E. Plum, A. Bitzer, M. Walther, P. Kuo, D.P. Tsai, N.I. Zheludev, Spectral collapse in ensembles of metamolecules. Phys. Rev. Lett. 104, 223901 (2010)

    Article  ADS  Google Scholar 

  78. N. Rougemaille, F. Montaigne, B. Canals, A. Duluard, D. Lacour, M. Hehn, R. Belkhou, O. Fruchart, S. El Moussaoui, A. Bendounan, F. Maccherozzi, Artificial kagome arrays of nanomagnets: a frozen dipolar spin ice. Phys. Rev. Lett. 106, 057209 (2011)

    Article  ADS  Google Scholar 

  79. J.G. Bohnet, Z. Chen, J.M. Weiner, D. Meiser, M.J. Holland, J.K. Thompson, A steady-state superradiant laser with less than one intracavity photon. Nature 484, 78 (2012)

    Article  ADS  Google Scholar 

  80. A.D. Ludlow, M.M. Boyd, J. Ye, E. Peik, P. Schmidt, Optical atomic clocks. Rev. Mod. Phys. 87, 637 (2015)

    Article  ADS  Google Scholar 

  81. R. Moessner, A.P. Ramirez, Geometrical frustration. Phys. Today 59, 24 (2006)

    Article  Google Scholar 

  82. M. Maksymenko, V.R. Chandra, R. Moessner, Classical dipoles on the kagome lattice. Phys. Rev. B 91, 1 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Bettles .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Bettles, R. (2017). Introduction. In: Cooperative Interactions in Lattices of Atomic Dipoles. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-62843-1_1

Download citation

Publish with us

Policies and ethics