Skip to main content

Finite Time Thermodynamic Analysis of Complex Brayton Cycle

  • Chapter
  • First Online:
Finite Time Thermodynamics of Power and Refrigeration Cycles

Abstract

In the present chapter, the effects of some important cycle parameters on the thermodynamic performance of complex Brayton cycles are studied by means of analytical relations using the concept of finite time thermodynamics (Curzon and Alhborn 1975). The analysis presented in this paper demonstrates the main parameters governing changes in performance variables and provides simple relations amongst the different cycle parameters. Thus, the use of analytical relations allows an understanding of the effects of different cycle parameters, such as, the turbine outlet temperature, reheat, intercooling, isothermal heat addition, cycle pressure ratios, etc. and provides a means for a quick estimation of such effects in a wide range.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Bhargava, R. and Peretto, A. (2002). A unique approach for thermo-economic optimization of an intercooled, reheat, and recuperated gas turbine for cogeneration applications. J. Eng. for Gas Turbine & Power, 124, 881–891.

    Article  Google Scholar 

  • Curzon, F.L. and Ahlborn, B. (1975). Efficiency of a Carnot engine at maximum power output. American Journal of Physics, 43, 22–24.

    Article  ADS  Google Scholar 

  • Erbay, L.B., Göktun, S. and Yavuz, H. (2001). Optimal design of the regenerative gas turbine engine with isothermal heat addition. Applied Energy, 68, 249–269.

    Article  Google Scholar 

  • Göktun, S. and Yavuz, H. (1999). Thermal efficiency of a regenerative Brayton cycle with isothermal heat addition. Energy Conv. Mangt, 40, 1259–1266.

    Article  Google Scholar 

  • Kaushik, S.C. and Tyagi, S.K. (2002). Finite time thermodynamic analysis of a nonisentropic regenerative Brayton heat engine. Int. J. Solar Energy, 22, 141–151.

    Google Scholar 

  • Kaushik, S.C., Tyagi, S.K. and Singhal, M.K. (2003). Parametric study of an irreversible regenerative Brayton heat engine with isothermal heat addition. Energy Convers Mgmt, 44, 2013–2025.

    Article  Google Scholar 

  • Kumar, S. (2000). Finite time thermodynamic analysis and second law evaluation of thermal energy conversion systems. Ph.D. Thesis, C.C.S. University, Meerut India.

    Google Scholar 

  • Negri-di, M.G., Gambini, M. and Peretto, A. (1995). Reheat and regenerative gas turbine for feed water repowering of steam power plant. ASME Turbo Expo. Houston, June 5–8, 1995.

    Google Scholar 

  • Tyagi, S.K., Kaushik, S.C. and Tyagi, B.K. (2000). Thermodynamic analysis of a regenerative Brayton cycle with isothermal heat addition, NREC-2000, 419–424, Nov. 30-Dec. 2, 2000, IIT Bombay, India.

    Google Scholar 

  • Tyagi, S.K. and Kaushik, S.C. (2005). Ecological optimization of an irreversible regenerative intercooled Brayton heat engine with direct heat loss. Int. Journal of Ambient Energy, 26, 81–92.

    Article  Google Scholar 

  • Tyagi, S.K., Chen, G.M., Wang, Q. and Kaushik, S.C. (2006a). A new thermoeconomic approach and parametric study of irreversible regenerative Brayton refrigeration cycle. Int. Journal of Refrigeration, 29, 1167–1174.

    Article  Google Scholar 

  • Tyagi, S.K., Chen, G.M., Wang, Q. and Kaushik, S.C. (2006b). Thermodynamic analysis and parametric study of an irreversible regenerative-intercooled-reheat Brayton cycle heat engine Int. Journal of Thermal Sciences, 45, 829–840.

    Article  Google Scholar 

  • Tyagi, S.K., Chen, J. and Kaushik, S.C. (2007). Effects of the intercooling on the performance of an irreversible regenerative modified Brayton cycle. Int. Journal of Power and Energy Systems, 27, 56–64.

    Article  Google Scholar 

  • Tyagi, S.K., Wang, S.W. and Park, S.R. (2008). Performance criteria on different pressure ratios of an irreversible modified complex Brayton cycle. Indian Journal of Pure & Applied Physics, 46, 565–574.

    Google Scholar 

  • Tyagi, S.K. (2009). Effects of intercooling on the performance of a realistic regenerative Brayton heat engine cycle. Int. Journal of Sustainable Energy, 28, 231–245.

    Article  ADS  Google Scholar 

  • Vecchiarelli, J., Kawall, J.G. and Wallace, J.S. (1997). Analysis of a concept for increasing the efficiency of a Brayton cycle via isothermal heat addition. Int. Journal of Energy Research, 21, 113–127.

    Article  Google Scholar 

  • Wang, W., Chen, L., Sun, F. and Wu, C. (2003). Performance analysis of and irreversible variable temperature heat reservoir closed intercooled regenerated Brayton cycle. Energy Convers Mgmt, 44, 2713–2732.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Capital Publishing Company, New Delhi, India

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaushik, S.C., Tyagi, S.K., Kumar, P. (2017). Finite Time Thermodynamic Analysis of Complex Brayton Cycle. In: Finite Time Thermodynamics of Power and Refrigeration Cycles. Springer, Cham. https://doi.org/10.1007/978-3-319-62812-7_5

Download citation

Publish with us

Policies and ethics