On the Mother of All Automata: The Position Automaton

  • Sabine BrodaEmail author
  • Markus Holzer
  • Eva Maia
  • Nelma Moreira
  • Rogério Reis
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10396)


We contribute new relations to the taxonomy of different conversions from regular expressions to equivalent finite automata. In particular, we are interested in ordinary transformations that construct automata such as, the follow automaton, the partial derivative automaton, the prefix automaton, the automata based on pointed expressions recently introduced and studied, and last but not least the position, or Glushkov automaton (\(\mathcal {A}_{{{\mathrm{POS}}}}\)), and their double reversed construction counterparts. We deepen the understanding of these constructions and show that with the artefacts used to construct the Glushkov automaton one is able to capture most of them. As a byproduct we define a dual version \(\mathcal {A}_{{{\mathrm{\overleftarrow{{{\mathrm{POS}}}}}}}}\) of the position automaton which plays a similar role as \(\mathcal {A}_{{{\mathrm{POS}}}}\) but now for the reverse expression. It turns out that although the conversion of regular expressions and reversal of regular expressions to finite automata seems quite similar, there are significant differences.


  1. 1.
    Allauzen, C., Mohri, M.: A unified construction of the glushkov, follow, and antimirov automata. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 110–121. Springer, Heidelberg (2006). doi: 10.1007/11821069_10 CrossRefGoogle Scholar
  2. 2.
    Antimirov, V.M.: Partial derivatives of regular expressions and finite automaton constructions. Theor. Comput. Sci. 155(2), 291–319 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Asperti, A., Coen, C.S., Tassi, E.: Regular expressions, au point. CoRR abs/1010.2604. (2010)
  4. 4.
    Brzozowski, J.A.: Canonical regular expressions and minimal state graphs for definite events. In: Mathematical Theory of Automata, MRI Symposia Series, pp. 529–561. Polytechnic Press, Polytechnic Institute of Brooklyn, NY, 12 (1962)Google Scholar
  5. 5.
    Brzozowski, J.: Derivatives of regular expressions. J. Assoc. Comput. Mach. 11, 481–494 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Champarnaud, J.M., Ziadi, D.: From Mirkin’s prebases to Antimirov’s word partial derivatives. Fundam. Inform. 45(3), 195–205 (2001)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Champarnaud, J.M., Ziadi, D.: Canonical derivatives, partial derivatives and finite automaton constructions. Theor. Comput. Sci. 289, 137–163 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Chen, H., Yu, S.: Derivatives of regular expressions and an application. In: Dinneen, M.J., Khoussainov, B., Nies, A. (eds.) WTCS 2012. LNCS, vol. 7160, pp. 343–356. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-27654-5_27 CrossRefGoogle Scholar
  9. 9.
    Giammarresi, D., Ponty, J.L., Wood, D.: Glushkov and Thompson constructions: A synthesis. HKUST TCSC-98-11, The Department of Science and Engineering, Theoretical Cmputer Science Group, The Hong Kong University of Science and Technology (1998)Google Scholar
  10. 10.
    Glushkov, V.M.: The abstract theory of automata. Russ. Math. Surveys 16, 1–53 (1961)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Gruber, H., Holzer, M.: From finite automata to regular expressions and back–a summary on descriptional complexity. Intern. J. Found. Comput. Sci. 26(8), 1009–1040 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Ilie, L., Yu, S.: Follow automata. Inf. Comput. 186(1), 140–162 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Maia, E., Moreira, N., Reis, R.: Prefix and right-partial derivative automata. In: Beckmann, A., Mitrana, V., Soskova, M. (eds.) CiE 2015. LNCS, vol. 9136, pp. 258–267. Springer, Cham (2015). doi: 10.1007/978-3-319-20028-6_26 CrossRefGoogle Scholar
  14. 14.
    McNaughton, R., Yamada, H.: Regular expressions and state graphs for automata. IEEE Trans. Comput. 9, 39–47 (1960)CrossRefzbMATHGoogle Scholar
  15. 15.
    Mirkin, B.G.: An algorithm for constructing a base in a language of regular expressions. Eng. Cybern. 5, 51–57 (1966)Google Scholar
  16. 16.
    Nipkow, T., Traytel, D.: Unified decision procedures for regular expression equivalence. In: Klein, G., Gamboa, R. (eds.) ITP 2014. LNCS, vol. 8558, pp. 450–466. Springer, Cham (2014). doi: 10.1007/978-3-319-08970-6_29 Google Scholar
  17. 17.
    Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press, Cambridge (2009)Google Scholar
  18. 18.
    Thompson, K.: Regular expression search algorithm. Commun. ACM 11(6), 410–422 (1968)CrossRefzbMATHGoogle Scholar
  19. 19.
    Yamamoto, H.: A new finite automaton construction for regular expressions. In: Bensch, S., Freund, R., Otto, F. (eds.) 6th NCMA. vol. 304, pp. 249–264 (2014)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Sabine Broda
    • 1
    Email author
  • Markus Holzer
    • 2
  • Eva Maia
    • 1
  • Nelma Moreira
    • 1
  • Rogério Reis
    • 1
  1. 1.CMUP and DCCFaculdade de Ciências da Universidado do PortoPortoPortugal
  2. 2.Institut für InformatikUniversität GiessenGiessenGermany

Personalised recommendations