Advertisement

Binomial Coefficients, Valuations, and Words

  • Eric RowlandEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10396)

Abstract

The study of arithmetic properties of binomial coefficients has a rich history. A recurring theme is that p-adic statistics reflect the base-p representations of integers. We discuss many results expressing the number of binomial coefficients \(\left( {\begin{array}{c}n\\ m\end{array}}\right) \) with a given p-adic valuation in terms of the number of occurrences of a given word in the base-p representation of n, beginning with a result of Glaisher from 1899, up through recent results by Spiegelhofer–Wallner and Rowland.

Keywords

Binomial coefficients p-adic valuation Regular sequences 

References

  1. 1.
    Allouche, J.-P., Shallit, J.: The ring of \(k\)-regular sequences. Theor. Comput. Sci. 98, 163–197 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Barat, G., Grabner, P.J.: Distribution of binomial coefficients and digital functions. J. Lond. Math. Soc. 64, 523–547 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Carlitz, L.: The number of binomial coefficients divisible by a fixed power of a prime. Rend. del Circ. Mat. di Palermo 16, 299–320 (1967)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Davis, K., Webb, W.: Pascal’s triangle modulo \(4\). Fibonacci Q. 29, 79–83 (1989)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Fine, N.: Binomial coefficients modulo a prime. Am. Math. Mon. 54, 589–592 (1947)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Glaisher, J.W.L.: On the residue of a binomial-theorem coefficient with respect to a prime modulus. Q. J. Pure Appl. Math. 30, 150–156 (1899)zbMATHGoogle Scholar
  7. 7.
    Howard, F.T.: The number of binomial coefficients divisible by a fixed power of \(2\). Proc. Am. Math. Soc. 29, 236–242 (1971)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Huard, J.G., Spearman, B.K., Williams, K.S.: Pascal’s triangle (mod 9). Acta Arith. 78, 331–349 (1997)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Huard, J.G., Spearman, B.K., Williams, K.S.: Pascal’s triangle (mod 8). Eur. J. Comb. 19, 45–62 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Kummer, E.: Über die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetzen. J. für die rein und angewandte Math. 44, 93–146 (1852)CrossRefGoogle Scholar
  11. 11.
    The OEIS Foundation, The On-Line Encyclopedia of Integer Sequences. http://oeis.org
  12. 12.
    Rowland, E.: The number of nonzero binomial coefficients modulo \(p^\alpha \). J. Comb. Num. Theor. 3, 15–25 (2011)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Rowland, E.: A matrix generalization of a theorem of Fine. https://arxiv.org/abs/1704.05872
  14. 14.
    Spiegelhofer, L., Wallner, M.: An explicit generating function arising in counting binomial coefficients divisible by powers of primes. https://arxiv.org/abs/1604.07089

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of MathematicsHofstra UniversityHempsteadUSA

Personalised recommendations