Advertisement

Classifying Non-periodic Sequences by Permutation Transducers

  • Hans ZantemaEmail author
  • Wieb Bosma
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10396)

Abstract

Transducers order infinite sequences into natural classes, but permutation transducers provide a finer classification, respecting certain changes to finite segments. We investigate this hierarchy for non-periodic sequences over \(\{0,1\}\) in which the groups of 0s and 1s grow according to simple functions like polynomials. In this hierarchy we find infinite strictly ascending chains of sequences, all being equivalent with respect to ordinary transducers.

References

  1. 1.
    Allouche, J.P., Shallit, J.: Automatic Sequences: Theory, Applications, Generalizations. Cambridge University Press, Cambridge (2003)CrossRefzbMATHGoogle Scholar
  2. 2.
    Bosma, W., Zantema, H.: Ordering sequences by permutation transducers. Indagationes Math. 38, 38–54 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Endrullis, J., Grabmayer, C., Hendriks, D., Zantema, H.: The degree of squares is an atom. In: Manea, F., Nowotka, D. (eds.) WORDS 2015. LNCS, vol. 9304, pp. 109–121. Springer, Cham (2015). doi: 10.1007/978-3-319-23660-5_10 CrossRefGoogle Scholar
  4. 4.
    Endrullis, J., Hendriks, D., Klop, J.W.: Degrees of streams. Integers Electron. J. Comb. Number Theor. 11B(A6), 1–40 (2011). Proceedings of Leiden Numeration Conference (2010)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Endrullis, J., Karhumäki, J., Klop, J.W., Saarela, A.: Degrees of infinite words, polynomials and atoms. In: Brlek, S., Reutenauer, C. (eds.) DLT 2016. LNCS, vol. 9840, pp. 164–176. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-53132-7_14 CrossRefGoogle Scholar
  6. 6.
    Endrullis, J., Klop, J.W., Saarela, A., Whiteland, M.: Degrees of transducibility. In: Manea, F., Nowotka, D. (eds.) WORDS 2015. LNCS, vol. 9304, pp. 1–13. Springer, Cham (2015). doi: 10.1007/978-3-319-23660-5_1 CrossRefGoogle Scholar
  7. 7.
    Pin, J.-E.: On reversible automata. In: Simon, I. (ed.) LATIN 1992. LNCS, vol. 583, pp. 401–416. Springer, Heidelberg (1992). doi: 10.1007/BFb0023844 Google Scholar
  8. 8.
    Sakarovitch, J.: Elements of automata theory. Cambridge University Press, Cambridge (2009)CrossRefzbMATHGoogle Scholar
  9. 9.
    Zantema, H., Bosma, W.: Extended version of this paper (2017). http://www.win.tue.nl/~hzantema/permtr.pdf

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Computer ScienceTU EindhovenEindhovenThe Netherlands
  2. 2.Radboud University NijmegenNijmegenThe Netherlands
  3. 3.Centrum voor Wiskunde en InformaticaAmsterdamThe Netherlands

Personalised recommendations