Advertisement

On the Number of Rich Words

  • Josef RukavickaEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10396)

Abstract

Any finite word w of length n contains at most \(n+1\) distinct palindromic factors. If the bound \(n+1\) is reached, the word w is called rich. The number of rich words of length n over an alphabet of cardinality q is denoted \(R_q(n)\). For binary alphabet, Rubinchik and Shur deduced that \({R_2(n)}\le c 1.605^n \) for some constant c. In addition, Guo, Shallit and Shur conjectured that the number of rich words grows slightly slower than \(n^{\sqrt{n}}\). We prove that \(\lim \limits _{n\rightarrow \infty }\root n \of {R_q(n)}=1\) for any q, i.e. \(R_q(n)\) has a subexponential growth on any alphabet.

Keywords

Rich words Enumeration Palindromes Palindromic factorization 

Notes

Acknowledgments

The author wishes to thank Edita Pelantová and Štěpán Starosta for their useful comments. The author acknowledges support by the Czech Science Foundation grant GAČR 13-03538S and by the Grant Agency of the Czech Technical University in Prague, grant No. SGS14/205/OHK4/3T/14.

References

  1. 1.
    Balková, L.: Beta-integers and Quasicrystals, Ph. D. thesis, Czech Technical University in Prague and Université Paris Diderot-Paris 7 (2008)Google Scholar
  2. 2.
    Balková, L., Pelantová, E., Starosta, Š.: Sturmian jungle (or garden?) on multiliteral alphabets. RAIRO Theor. Inf. Appl. 44, 443–470 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bannai, H., Gagie, T., Inenaga, S., Kärkkäinen, J., Kempa, D., Piątkowski, M., Puglisi, S.J., Sugimoto, S.: Diverse palindromic factorization is NP-complete. In: Potapov, I. (ed.) DLT 2015. LNCS, vol. 9168, pp. 85–96. Springer, Cham (2015). doi: 10.1007/978-3-319-21500-6_6 CrossRefGoogle Scholar
  4. 4.
    Massé, A.B., Brlek, S., Labbé, S., Vuillon, L.: Palindromic complexity of codings of rotations. Theor. Comput. Sci. 412, 6455–6463 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bucci, M., De Luca, A., Glen, A., Zamboni, L.Q.: A new characteristic property of rich words. Theor. Comput. Sci. 410, 2860–2863 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Droubay, X., Justin, J., Pirillo, G.: Episturmian words and some constructions of de Luca and Rauzy. Theor. Comput. Sci. 255, 539–553 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Frid, A., Puzynina, S., Zamboni, L.: On palindromic factorization of words. Adv. Appl. Math. 50, 737–748 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Glen, A., Justin, J., Widmer, S., Zamboni, L.Q.: Palindromic richness. Eur. J. Comb. 30, 510–531 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Guo, C., Shallit, J., Shur, A.M.: Palindromic rich words and run-length encodings. Inform. Process. Lett. 116, 735–738 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Pelantová, E., Starosta, Š.: Palindromic richness for languages invariant under more symmetries. Theor. Comput. Sci. 518, 42–63 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Rubinchik, M., Shur, A.M.: EERTREE: an efficient data structure for processing palindromes in strings. In: Lipták, Z., Smyth, W.F. (eds.) IWOCA 2015. LNCS, vol. 9538, pp. 321–333. Springer, Cham (2016). doi: 10.1007/978-3-319-29516-9_27 CrossRefGoogle Scholar
  12. 12.
    Rubinchik, M., Shur, A.M.: The number of distinct subpalindromes in random words. Fund. Inf. 145, 371–384 (2016)MathSciNetGoogle Scholar
  13. 13.
    Schaeffer, L., Shallit, J.: Closed, palindromic, rich, privileged, trapezoidal, and balanced words in automatic sequences. Electr. J. Comb. 23, P1.25 (2016)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Shur, A.M.: Growth properties of power-free languages. Comput. Sci. Rev. 6, 187–208 (2012)CrossRefzbMATHGoogle Scholar
  15. 15.
    Vesti, J.: Extensions of rich words. Theor. Comput. Sci. 548, 14–24 (2014)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of Nuclear Sciences and Physical EngineeringCzech Technical University in PraguePrague 2Czech Republic

Personalised recommendations