Deleting Deterministic Restarting Automata with Two Windows

  • František Mráz
  • Friedrich OttoEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10396)


We study deterministic restarting automata with two windows. In each cycle of a computation, these det-2-RR-automata can perform up to two delete operations, one with each of their two windows. We study the class of languages accepted by these automata, comparing it to other well-known language classes and exploring closure properties.


Restarting automaton Language class Closure property 


  1. 1.
    Berstel, J.: Transductions and Context-Free Languages. Teubner Studienbücher, Teubner-Verlag, Stuttgart (1979)Google Scholar
  2. 2.
    Buntrock, G., Otto, F.: Growing context-sensitive languages and Church-Rosser languages. Inf. Comput. 141, 1–16 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Chrobak, M.: Hierarchies of one-way multihead automata languages. Theor. Comput. Sci. 48, 153–181 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Chrobak, M., Li, M.: \(k+1\) heads are better than \(k\) for PDAs. J. Comput. Syst. Sci. 37, 144–155 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Culy, C.: Formal properties of natural language and linguistic theories. Linguist. Philos. 19, 599–617 (1996)CrossRefGoogle Scholar
  6. 6.
    Dahlhaus, E., Warmuth, M.: Membership for growing context-sensitive grammars is polynomial. J. Comput. Syst. Sci. 33, 456–472 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Gramatovici, R., Martín-Vide, C.: Sorted dependency insertion grammars. Theor. Comput. Sci. 354, 142–152 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Holzer, M., Kutrib, M., Malcher, A.: Complexity of multi-head finite automata: origins and directions. Theor. Comput. Sci. 412, 83–96 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Jančar, P., Mráz, F., Plátek, M., Vogel, J.: Restarting automata. In: Reichel, H. (ed.) FCT 1995. LNCS, vol. 965, pp. 283–292. Springer, Heidelberg (1995). doi: 10.1007/3-540-60249-6_60 CrossRefGoogle Scholar
  10. 10.
    Jančar, P., Mráz, F., Plátek, M., Vogel, J.: On restarting automata with rewriting. In: Păun, G., Salomaa, A. (eds.) New Trends in Formal Languages. LNCS, vol. 1218, pp. 119–136. Springer, Heidelberg (1997). doi: 10.1007/3-540-62844-4_8 CrossRefGoogle Scholar
  11. 11.
    Jančar, P., Mráz, F., Plátek, M., Vogel, J.: On monotonic automata with a restart operation. J. Autom. Lang. Comb. 4, 287–311 (1999)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Jurdziński, T., Loryś, K., Niemann, G., Otto, F.: Some results on RWW- and RRWW-automata and their relation to the class of growing context-sensitive languages. J. Autom. Lang. Comb. 9, 407–437 (2004)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Lopatková, M., Plátek, M., Sgall, P.: Towards a formal model for functional generative description - analysis by reduction and restarting automata. The Prague Bull. Math. Linguist. 87, 7–26 (2007)Google Scholar
  14. 14.
    McNaughton, R., Narendran, P., Otto, F.: Church-Rosser Thue systems and formal languages. J. ACM 35, 324–344 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Mráz, F., Otto, F., Plátek, M.: Free word-order and restarting automata. Fundam. Inf. 133, 399–419 (2014)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Otto, F.: Restarting automata. In: Ésik, Z., Martín-Vide, C., Mitrana, V. (eds.) Recent Advances in Formal Languages and Applications. Studies in Computational Intelligence, vol. 25, pp. 269–303. Springer, Heidelberg (2006). doi: 10.1007/978-3-540-33461-3_11 CrossRefGoogle Scholar
  17. 17.
    Otto, F., Plátek, M.: A two-dimensional taxonomy of proper languages of lexicalized FRR-automata. In: Martín-Vide, C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 409–420. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-88282-4_37 CrossRefGoogle Scholar
  18. 18.
    Pardubská, D., Plátek, M., Otto, F.: Parallel communicating grammar systems with regular control and skeleton preserving FRR automata. Theor. Comput. Sci. 412, 458–477 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Plátek, M., Mráz, F., Lopatková, M.: (In)dependencies in functional generative description by restarting automata. In: Bordihn, H., Freund, R., Hinze, T., Holzer, M., Kutrib, M., Otto, F. (eds.) Proceedings of NCMA 2010., vol. 263, pp. 155–170. Österreichische Computer Gesellschaft, Vienna (2010)Google Scholar
  20. 20.
    Plátek, M., Mráz, F., Lopatková, M.: Restarting automata with structured output and functional generative description. In: Dediu, A.-H., Fernau, H., Martín-Vide, C. (eds.) LATA 2010. LNCS, vol. 6031, pp. 500–511. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-13089-2_42 CrossRefGoogle Scholar
  21. 21.
    Rambow, O., Joshi, A.: A processing model for free word order languages. In: Clifton, C., Frazier, L., Rayner, K. (eds.) Perspectives on Sentence Processing, pp. 267–302. Lawrence Erlbaum Associates, Hillsdale (1994)Google Scholar
  22. 22.
    Sudborough, H.: One-way multihead writing finite automata. Inf. Control 30, 1–20 (1976)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Computer Science, Faculty of Mathematics and PhysicsCharles UniversityPraha 1Czech Republic
  2. 2.Fachbereich Elektrotechnik/InformatikUniversität KasselKasselGermany

Personalised recommendations