Advertisement

Deleting Deterministic Restarting Automata with Two Windows

  • František Mráz
  • Friedrich OttoEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10396)

Abstract

We study deterministic restarting automata with two windows. In each cycle of a computation, these det-2-RR-automata can perform up to two delete operations, one with each of their two windows. We study the class of languages accepted by these automata, comparing it to other well-known language classes and exploring closure properties.

Keywords

Restarting automaton Language class Closure property 

References

  1. 1.
    Berstel, J.: Transductions and Context-Free Languages. Teubner Studienbücher, Teubner-Verlag, Stuttgart (1979)Google Scholar
  2. 2.
    Buntrock, G., Otto, F.: Growing context-sensitive languages and Church-Rosser languages. Inf. Comput. 141, 1–16 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Chrobak, M.: Hierarchies of one-way multihead automata languages. Theor. Comput. Sci. 48, 153–181 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Chrobak, M., Li, M.: \(k+1\) heads are better than \(k\) for PDAs. J. Comput. Syst. Sci. 37, 144–155 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Culy, C.: Formal properties of natural language and linguistic theories. Linguist. Philos. 19, 599–617 (1996)CrossRefGoogle Scholar
  6. 6.
    Dahlhaus, E., Warmuth, M.: Membership for growing context-sensitive grammars is polynomial. J. Comput. Syst. Sci. 33, 456–472 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Gramatovici, R., Martín-Vide, C.: Sorted dependency insertion grammars. Theor. Comput. Sci. 354, 142–152 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Holzer, M., Kutrib, M., Malcher, A.: Complexity of multi-head finite automata: origins and directions. Theor. Comput. Sci. 412, 83–96 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Jančar, P., Mráz, F., Plátek, M., Vogel, J.: Restarting automata. In: Reichel, H. (ed.) FCT 1995. LNCS, vol. 965, pp. 283–292. Springer, Heidelberg (1995). doi: 10.1007/3-540-60249-6_60 CrossRefGoogle Scholar
  10. 10.
    Jančar, P., Mráz, F., Plátek, M., Vogel, J.: On restarting automata with rewriting. In: Păun, G., Salomaa, A. (eds.) New Trends in Formal Languages. LNCS, vol. 1218, pp. 119–136. Springer, Heidelberg (1997). doi: 10.1007/3-540-62844-4_8 CrossRefGoogle Scholar
  11. 11.
    Jančar, P., Mráz, F., Plátek, M., Vogel, J.: On monotonic automata with a restart operation. J. Autom. Lang. Comb. 4, 287–311 (1999)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Jurdziński, T., Loryś, K., Niemann, G., Otto, F.: Some results on RWW- and RRWW-automata and their relation to the class of growing context-sensitive languages. J. Autom. Lang. Comb. 9, 407–437 (2004)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Lopatková, M., Plátek, M., Sgall, P.: Towards a formal model for functional generative description - analysis by reduction and restarting automata. The Prague Bull. Math. Linguist. 87, 7–26 (2007)Google Scholar
  14. 14.
    McNaughton, R., Narendran, P., Otto, F.: Church-Rosser Thue systems and formal languages. J. ACM 35, 324–344 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Mráz, F., Otto, F., Plátek, M.: Free word-order and restarting automata. Fundam. Inf. 133, 399–419 (2014)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Otto, F.: Restarting automata. In: Ésik, Z., Martín-Vide, C., Mitrana, V. (eds.) Recent Advances in Formal Languages and Applications. Studies in Computational Intelligence, vol. 25, pp. 269–303. Springer, Heidelberg (2006). doi: 10.1007/978-3-540-33461-3_11 CrossRefGoogle Scholar
  17. 17.
    Otto, F., Plátek, M.: A two-dimensional taxonomy of proper languages of lexicalized FRR-automata. In: Martín-Vide, C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 409–420. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-88282-4_37 CrossRefGoogle Scholar
  18. 18.
    Pardubská, D., Plátek, M., Otto, F.: Parallel communicating grammar systems with regular control and skeleton preserving FRR automata. Theor. Comput. Sci. 412, 458–477 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Plátek, M., Mráz, F., Lopatková, M.: (In)dependencies in functional generative description by restarting automata. In: Bordihn, H., Freund, R., Hinze, T., Holzer, M., Kutrib, M., Otto, F. (eds.) Proceedings of NCMA 2010. books@acg.at, vol. 263, pp. 155–170. Österreichische Computer Gesellschaft, Vienna (2010)Google Scholar
  20. 20.
    Plátek, M., Mráz, F., Lopatková, M.: Restarting automata with structured output and functional generative description. In: Dediu, A.-H., Fernau, H., Martín-Vide, C. (eds.) LATA 2010. LNCS, vol. 6031, pp. 500–511. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-13089-2_42 CrossRefGoogle Scholar
  21. 21.
    Rambow, O., Joshi, A.: A processing model for free word order languages. In: Clifton, C., Frazier, L., Rayner, K. (eds.) Perspectives on Sentence Processing, pp. 267–302. Lawrence Erlbaum Associates, Hillsdale (1994)Google Scholar
  22. 22.
    Sudborough, H.: One-way multihead writing finite automata. Inf. Control 30, 1–20 (1976)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Computer Science, Faculty of Mathematics and PhysicsCharles UniversityPraha 1Czech Republic
  2. 2.Fachbereich Elektrotechnik/InformatikUniversität KasselKasselGermany

Personalised recommendations