A Medvedev Characterization of Recognizable Tree Series

  • Luisa HerrmannEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10396)


We introduce representable tree series over commutative semirings, which extend representable sets [10] to the weighted setting. We prove that restricted representable tree series are exactly those tree series that can be recognized by weighted tree automata. Moreover, we investigate the relation between unrestricted representable tree series and weighted monadic second-order logic.



The author thanks Tobias Denkinger and Johannes Osterholzer for several useful discussions concerning the content of this work.


  1. 1.
    Berstel, J., Reutenauer, C.: Recognizable formal power series on trees. Theor. Comput. Sci. 18(2), 115–148 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Berstel, J., Reutenauer, C.: Rational Series and Their Languages. EATCS Monographs on Theoretical Computer Science, vol. 12. Springer, Heidelberg (1988)CrossRefzbMATHGoogle Scholar
  3. 3.
    Bozapalidis, S.: Representable tree series. Fundam. Inf. 21(4), 367–389 (1994)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Costich, O.L.: A Medvedev characterization of sets recognized by generalized finite automata. Math. Syst. Theor. 6(1–2), 263–267 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Droste, M., Gastin, P.: Weighted automata and weighted logics. Theor. Comput. Sci. 380(1), 69–86 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Droste, M., Götze, D., Märcker, S., Meinecke, I.: Weighted tree automata over valuation monoids and their characterization by weighted logics. In: Kuich, W., Rahonis, G. (eds.) Algebraic Foundations in Computer Science. LNCS, vol. 7020, pp. 30–55. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-24897-9_2 CrossRefGoogle Scholar
  7. 7.
    Droste, M., Vogler, H.: Weighted tree automata and weighted logics. Theor. Comput. Sci. 366, 228–247 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Droste, M., Vogler, H.: Weighted logics for unranked tree automata. Theor. Comput. Syst. 48(1), 23–47 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Fülöp, Z., Vogler, H.: Weighted tree automata and tree transducers. In: Droste, M., Kuich, W., Vogler, H. (eds.) Handbook of Weighted Automata, pp. 313–403. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Medvedev, Y.T.: On the class of events representable in a finite automaton. Automata Studies (1956). Also in Sequential machines - Selected papers (translated from Russian), pp. 215–227. Addison-Wesley (1964)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Faculty of Computer ScienceTechnische Universität DresdenDresdenGermany

Personalised recommendations