Two-Way Two-Tape Automata

  • Olivier CartonEmail author
  • Léo Exibard
  • Olivier Serre
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10396)


In this article we consider two-way two-tape (alternating) automata accepting pairs of words and we study some closure properties of this model. Our main result is that such alternating automata are not closed under complementation for non-unary alphabets. This improves a similar result of Kari and Moore for picture languages. We also show that these deterministic, non-deterministic and alternating automata are not closed under composition.


Alternating Multi-tape automata Complementation 


  1. 1.
    Blum, M., Hewitt, C.: Automata on a 2-dimensional tape. In: 8th Annual Symposium on Switching and Automata Theory (SWAT 1967), pp. 155–160. IEEE (1967)Google Scholar
  2. 2.
    Cohen, A., Collard, J.F.: Instance-wise reaching definition analysis for recursive programs using context-free transductions. In: International Conference on Parallel Architectures and Compilation Techniques, pp. 332–339. IEEE (1998)Google Scholar
  3. 3.
    Elgot, C.C., Mezei, J.E.: On relations defined by generalized finite automata. IBM J. Res. Dev. 9, 47–68 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Engelfriet, J., Hoogeboom, H.J.: MSO definable string transductions and two-way finite-state transducers. ACM Trans. Comput. Log. 2(2), 216–254 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Giammarresi, D., Restivo, A.: Recognizable picture languages. Int. J. Pattern Recogn. Artif. Intell. 6, 241–256 (1992)CrossRefzbMATHGoogle Scholar
  6. 6.
    Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games: A Guide to Current Research. LNCS, vol. 2500. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  7. 7.
    Kapoutsis, C.: Removing bidirectionality from nondeterministic finite automata. In: Jȩdrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp. 544–555. Springer, Heidelberg (2005). doi: 10.1007/11549345_47 CrossRefGoogle Scholar
  8. 8.
    Kari, J., Moore, C.: New results on alternating and non-deterministic two-dimensional finite-state automata. In: Ferreira, A., Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010, pp. 396–406. Springer, Heidelberg (2001). doi: 10.1007/3-540-44693-1_35 CrossRefGoogle Scholar
  9. 9.
    Kari, J., Moore, C.: Rectangles and squares recognized by two-dimensional automata. In: Karhumäki, J., Maurer, H., Păun, G., Rozenberg, G. (eds.) Theory Is Forever. LNCS, vol. 3113, pp. 134–144. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-27812-2_13 CrossRefGoogle Scholar
  10. 10.
    Kari, J., Salo, V.: A survey on picture-walking automata. In: Kuich, W., Rahonis, G. (eds.) Algebraic Foundations in Computer Science. LNCS, vol. 7020, pp. 183–213. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-24897-9_9 CrossRefGoogle Scholar
  11. 11.
    Lind, D., Marcus, B.: An Introduction to Symbolic Dynamics and Coding. Cambridge University Press, Cambridge (1995)CrossRefzbMATHGoogle Scholar
  12. 12.
    Lothaire, M.: Algebraic Combinatorics on Words, Chap. 7, pp. 230–268. Cambridge University Press, Cambridge (2002)Google Scholar
  13. 13.
    Roche, E., Schabes, Y.: Finite-State Language Processing, Chap. 7. MIT Press, Cambridge (1997)Google Scholar
  14. 14.
    Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press, Cambridge (2009)CrossRefzbMATHGoogle Scholar
  15. 15.
    Sipser, M.: Halting space-bounded computations. Theor. Comput. Sci. 10(3), 335–338 (1980)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.IRIF, Université Paris Diderot & CNRSParisFrance
  2. 2.Département d’InformatiqueENS de LyonLyonFrance

Personalised recommendations