Skip to main content
Book cover

Nanoenergy pp 141–160Cite as

Latest Advances on the Columnar Nanostructure for Solar Water Splitting

  • Chapter
  • First Online:

Abstract

In this chapter, we briefly review a recent progress in chemical synthesis used to prepare promising and active material to be applied as photoanode in a PEC cell. A variety of morphology, crystal alignment, and bulk recombination was discussed during the light-induced water oxidation reaction evaluation. The major drawback related to the hole diffusion through the solid/liquid interface was addressed in terms of high annealing temperature combined with dopant addition. In this chapter, a critical view and depth understanding of the role of synergistic effect of these two parameters were discussed focusing on the molecular oxygen evolution mechanism from sunlight-driven water oxidation reaction.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Fujishima A, Honda K (1972) Nature 238:37–38

    Article  Google Scholar 

  2. Sivula K, Le Formal F, Grätzel M (2011) Chemsuschem 4:432–449

    Article  Google Scholar 

  3. Walter MG, Warren EL, McKone JR, Boettcher SW, Mi Q, Santori EA, Lewis NS (2010) Chem Rev 110:6446–6473

    Article  Google Scholar 

  4. Cho IS, Han HS, Logar M, Park J, Zheng X (2016) Adv Energy Mat 6

    Google Scholar 

  5. Pendlebury SR, Cowan AJ, Barroso M, Sivula K, Ye J, Grätzel M, Klug DR, Tang J, Durrant JR (2012) Energy Environ Sci 5:6304–6312

    Article  Google Scholar 

  6. Warren SC, Voïtchovsky K, Dotan H, Leroy CM, Cornuz M, Stellacci F, Hébert C, Rothschild A, Grätzel M (2013) Nat Mater 12:842–849

    Article  Google Scholar 

  7. Steier L, Herraiz-Cardona I, Gimenez S, Fabregat-Santiago F, Bisquert J, Tilley SD, Grätzel M (2014) Adv Func Mater 24:7681–7688

    Article  Google Scholar 

  8. Bertoluzzi L, Bisquert J (2012) J phys Chem Lett 3:2517–2522

    Article  Google Scholar 

  9. Barroso M, Mesa CA, Pendlebury SR, Cowan AJ, Hisatomi T, Sivula K, Grätzel M, Klug DR, Durrant JR (2012) Proc Natl Acad Sci 109:15640–15645

    Article  Google Scholar 

  10. Young KM, Klahr BM, Zandi O, Hamann TW (2013) Catal Sci Technol 3:1660–1671

    Article  Google Scholar 

  11. Nellist MR, Laskowski FA, Lin F, Mills TJ, Boettcher SW (2016) Acc Chem Res 49:733–740

    Article  Google Scholar 

  12. Tamirat AG, Rick J, Dubale AA, Su W-N, Hwang B-J (2016) Nanoscale Horizons 1:243–267

    Article  Google Scholar 

  13. Shinde PS, Annamalai A, Kim JH, Choi SH, Lee JS, Jang JS (2015) Sol Energy Mater Sol Cells 141:71–79

    Article  Google Scholar 

  14. Shinde PS, Choi SH, Kim Y, Ryu J, Jang JS (2016) Phys Chemistry Chem Phys 18:2495–2509

    Article  Google Scholar 

  15. Soares MR, Gonçalves RH, Nogueira IC, Bettini J, Chiquito AJ, Leite ER (2016) Phys Chemistry Chem Phys 18:21780–21788

    Article  Google Scholar 

  16. Gadiyar C, Loiudice A, Buonsanti R (2017) J Phys D Appl Phys 50:074006

    Article  Google Scholar 

  17. Sivula K, Zboril R, Le Formal F, Robert R, Weidenkaff A, Tucek J, Frydrych J, Gratzel M (2010) J Am Chem Soc 132:7436–7444

    Article  Google Scholar 

  18. Goncalves RH, Leite ER (2014) J Mater Res 29:47–54

    Article  Google Scholar 

  19. Gonçalves RH, Lima BH, Leite ER (2011) J Am Chem Soc 133:6012–6019

    Article  Google Scholar 

  20. Bjoerksten U, Moser J, Graetzel M (1994) Chem Mater 6:858–863

    Article  Google Scholar 

  21. Tilley SD, Cornuz M, Sivula K, Grätzel M (2010) Angew Chem 122:6549–6552

    Article  Google Scholar 

  22. Dare-Edwards MP, Goodenough JB, Hamnett A, Trevellick PR (1983) J Chem Soc, Faraday Trans 1: Phys Chem Condens Phases 79:2027–2041

    Article  Google Scholar 

  23. Trasatti S (1980) J Electroanal Chem Interfacial Electrochem 111:125–131

    Article  Google Scholar 

  24. Yanina SV, Rosso KM (2008) Science 320:218–222

    Article  Google Scholar 

  25. Gonçalves RH, Leite ER (2014) Energy Environ Sci 7:2250–2254

    Article  Google Scholar 

  26. de Vicente J, Klingenberg DJ, Hidalgo-Alvarez R (2011) Soft Matter 7:3701–3710

    Article  Google Scholar 

  27. Vayssieres L, Beermann N, Lindquist S-E, Hagfeldt A (2001) Chem Mater 13:233–235

    Article  Google Scholar 

  28. Vayssieres L, Guo J, Nordgren J (2000) Purpose-built anisotropic metal oxide nanomaterials, MRS Proceedings. Cambridge University Press, USA, p C7. 8

    Google Scholar 

  29. de Carvalho VAN, Luz RAS, Lima BH, Crespilho FN, Leite ER, Souza FL (2012) Journal of Power Sources 205 (2012) 525–529

    Google Scholar 

  30. Ferraz LC, Carvalho WM Jr, Criado D, Souza FL (2012) ACS Appl Mater Interfaces 4:5515–5523

    Article  Google Scholar 

  31. Lindgren T, Wang H, Beermann N, Vayssieres L, Hagfeldt A, Lindquist S-E (2002) Sol Energy Mater Sol Cells 71:231–243

    Article  Google Scholar 

  32. Beermann N, Vayssieres L, Lindquist SE, Hagfeldt A (2000) J Electrochem Soc 147:2456–2461

    Article  Google Scholar 

  33. Ling Y, Wang G, Wheeler DA, Zhang JZ, Li Y (2011) Nano Lett 11:2119–2125

    Article  Google Scholar 

  34. Deng J, Zhong J, Pu A, Zhang D, Li M, Sun X, Lee S-T (2012) J Appl Phys 112:084312

    Article  Google Scholar 

  35. Shen S, Jiang J, Guo P, Kronawitter CX, Mao SS, Guo L (2012) Nano Energy 1:732–741

    Article  Google Scholar 

  36. Ling Y, Wang G, Reddy J, Wang C, Zhang JZ, Li Y (2012) Angew Chem Int Ed 51:4074–4079

    Article  Google Scholar 

  37. Xi L, Tran PD, Chiam SY, Bassi PS, Mak WF, Mulmudi HK, Batabyal SK, Barber J, Loo JSC, Wong LH (2012) J Phys Chem C 116:13884–13889

    Article  Google Scholar 

  38. Miao C, Ji S, Xu G, Liu G, Zhang L, Ye C (2012) ACS Appl Mater Interfaces 4:4428–4433

    Article  Google Scholar 

  39. Xi L, Chiam SY, Mak WF, Tran PD, Barber J, Loo SCJ, Wong LH (2013) Chemi Sci 4:164–169

    Article  Google Scholar 

  40. Miao C, Shi T, Xu G, Ji S, Ye C (2013) ACS Appl Mater Interfaces 5:1310–1316

    Article  Google Scholar 

  41. Shen S, Kronawitter CX, Wheeler DA, Guo P, Lindley SA, Jiang J, Zhang JZ, Guo L, Mao SS (2013) J Mat Chem A 1:14498–14506

    Article  Google Scholar 

  42. Shen S, Guo P, Wheeler DA, Jiang J, Lindley SA, Kronawitter CX, Zhang JZ, Guo L, Mao SS (2013) Nanoscale 5:9867–9874

    Article  Google Scholar 

  43. Chiam SY, Kumar MH, Bassi PS, Seng HL, Barber J, Wong LH (2014) ACS Appl Mater Interfaces 6:5852–5859

    Article  Google Scholar 

  44. Shen S, Li M, Guo L, Jiang J, Mao SS (2014) J Colloid Interface Sci 427:20–24

    Article  Google Scholar 

  45. Shen S, Zhou J, Dong C-L, Hu Y, Tseng EN, Guo P, Guo L, Mao SS (2014) Scientific Reports 4:6627

    Article  Google Scholar 

  46. Freitas AL, Carvalho WM, Souza FL (2015) J Mater Res 30:3595–3604

    Article  Google Scholar 

  47. Li X, Bassi PS, Boix PP, Fang Y, Wong LH (2015) ACS Appl Mater Interfaces 7:16960–16966

    Article  Google Scholar 

  48. Wang D, Zhang Y, Peng C, Wang J, Huang Q, Su S, Wang L, Huang W, Fan C (2015) Adv Sci 2

    Google Scholar 

  49. Fu Y, Dong CL, Lee WY, Chen J, Guo P, Zhao L, Shen S (2016) ChemNanoMat 2:704–711

    Article  Google Scholar 

  50. Carvalho WM, Souza FL (2016) ChemPhysChem 17:2710–2717

    Article  Google Scholar 

  51. Wickman B, Fanta AB, Burrows A, Hellman A, Wagner JB, Iandolo B (2017) Scientific reports 7

    Google Scholar 

  52. Zhou F, Kotru S, Pandey R (2002) Thin Solid Films 408:33–36

    Article  Google Scholar 

  53. Kaouk A, Ruoko T-P, Pyeon M, Gönüllü Y, Kaunisto K, Lemmetyinen H, Mathur S (2016) J Phys Chem C 120:28345–28353

    Article  Google Scholar 

  54. Kronawitter C, Zegkinoglou I, Rogero C, Guo J-H, Mao S, Himpsel F, Vayssieres L (2012) J Phys Chem C 116:22780–22785

    Article  Google Scholar 

  55. Annamalai A, Kannan AG, Lee SY, Kim D-W, Choi SH, Jang JS (2015) J Phys Chem C 119:19996–20002

    Article  Google Scholar 

  56. Li M, Yang Y, Ling Y, Qiu W, Wang F, Liu T, Song Y, Liu X, Fang P, Tong Y (2017) Nano Lett 17:2490–2495

    Article  Google Scholar 

  57. Ling Y, Li Y (2014) Part Part Syst Charact 31:1113–1121

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Flavio L Souza or Edson R Leite .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Souza, F.L., Leite, E.R. (2018). Latest Advances on the Columnar Nanostructure for Solar Water Splitting. In: Souza, F., Leite, E. (eds) Nanoenergy. Springer, Cham. https://doi.org/10.1007/978-3-319-62800-4_4

Download citation

Publish with us

Policies and ethics