Skip to main content

Abstract

This chapter is focused on a family of antennas recently proposed, whose common denominator is that they consist in a flat metallic plane with a central narrow aperture surrounded by corrugations. This new family of antennas has occupied a very important place in the development of communication technologies and solutions for several communication applications since, compared to higher volume structures, as horn or parabolic antennas, they present equal or even higher radiation characteristics. An introduction, which also serves as an historical overview, is presented in the first place, emphasizing the relation with both extraordinary transmission structures demonstrated initially at optical wavelengths as well as with leaky-wave antennas, developed mainly in microwaves. Afterwards, the physical mechanism for radiation and the main guidelines for the design of these antennas are discussed. Next, an overview of some of the most appealing designs and results related with this technology is presented, putting special emphasis in terahertz-band applications. Finally, tips on foreseen future trends are summarized to conclude the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    Strictly speaking, Ebbesen’s results do not contradict Bethe-Bouwkamp’s theory. Recall that the latter is valid for an isolated hole in an infinite metal film, rather different from the hole matrix studied by Ebbesen.

References

  1. H.A. Bethe, Theory of diffraction by small holes. Phys. Rev. 66, 163–182 (1944). doi:10.1103/PhysRev.66.163

    Article  MathSciNet  Google Scholar 

  2. C.J. Bouwkamp, Diffraction theory. Rep. Prog. Phys. 17, 35–100 (1954). doi:10.1088/0034-4885/17/1/302

    Article  MathSciNet  Google Scholar 

  3. T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, P.A. Wolff, Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391, 667–669 (1998)

    Article  Google Scholar 

  4. W.L. Barnes, A. Dereux, T.W. Ebbesen, Surface plasmon subwavelength optics. Nature 424, 824–830 (2003). doi:10.1038/nature01937

    Article  Google Scholar 

  5. Surface plasmon resurrection, Nat. Photon. 6, 707 (2012)

    Article  Google Scholar 

  6. F.J. García de Abajo, Colloquium: light scattering by particle and hole arrays. Rev. Mod. Phys. 79, 1267–1290 (2007). doi:10.1103/RevModPhys.79.1267

    Article  Google Scholar 

  7. F.J. Garcia-Vidal, L. Martin-Moreno, T.W. Ebbesen, L. Kuipers, Light passing through subwavelength apertures. Rev. Mod. Phys. 82, 729–787 (2010). doi:10.1103/RevModPhys.82.729

    Article  Google Scholar 

  8. L. Martín-Moreno, F.J. García-Vidal, H.J. Lezec, K.M. Pellerin, T. Thio, J.B. Pendry, T.W. Ebbesen, Theory of extraordinary optical transmission through subwavelength hole arrays. Phys. Rev. Lett. 86, 1114–1117 (2001). doi:10.1103/PhysRevLett.86.1114

    Article  Google Scholar 

  9. J.A. Porto, F.J. Garcia-Vidal, J.B. Pendry, Transmission resonances on metallic gratings with very narrow slits. Phys. Rev. Lett. 83, 2845–2848 (1999). doi:10.1103/PhysRevLett.83.2845

    Article  Google Scholar 

  10. D.E. Grupp, H.J. Lezec, T. Thio, T.W. Ebbesen, Beyond the Bethe limit: tunable enhanced light transmission through a single sub-wavelength aperture. Adv. Mater. 11, 860–862 (1999). doi:10.1002/(SICI)1521-4095(199907)11:10<860::AID-ADMA860>3.0.CO;2-V

    Article  Google Scholar 

  11. W.C. Chen, N.I. Landy, K. Kempa, W.J. Padilla, A subwavelength extraordinary-optical-transmission channel in babinet metamaterials. Adv. Opt. Mater. 1, 195–195 (2013). doi:10.1002/adom.201370017

    Article  Google Scholar 

  12. F. Falcone, T. Lopetegi, M.A.G. Laso, J.D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, M. Sorolla, Babinet principle applied to the design of metasurfaces and metamaterials. Phys. Rev. Lett. 93, 197401 (2004). doi:10.1103/PhysRevLett.93.197401

  13. T. Zentgraf, T.P. Meyrath, A. Seidel, S. Kaiser, H. Giessen, C. Rockstuhl, F. Lederer, Babinet’s principle for optical frequency metamaterials and nanoantennas. Phys. Rev. B Condens. Matter Mater. Phys. 76, 4–7 (2007). doi:10.1103/PhysRevB.76.033407

  14. H.J. Lezec, A. Degiron, E. Devaux, R.A. Linke, L. Martin-Moreno, F.J. Garcia-Vidal, T.W. Ebbesen, Beaming light from a subwavelength aperture. Science 297, 820–822 (2002). doi:10.1126/science.1071895

    Article  Google Scholar 

  15. L. Martín-Moreno, F.J. García-Vidal, H.J. Lezec, A. Degiron, T.W. Ebbesen, Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations. Phys. Rev. Lett. 90, 167401 (2003). doi:10.1103/PhysRevLett.90.167401

    Article  Google Scholar 

  16. F.J. García-Vidal, H.J. Lezec, T.W. Ebbesen, L. Martín-Moreno, Multiple paths to enhance optical transmission through a single subwavelength slit. Phys. Rev. Lett. 90, 213901 (2003). doi:10.1103/PhysRevLett.90.213901

    Article  Google Scholar 

  17. M. Beruete, M. Sorolla, I. Campillo, J.S. Dolado, L. Martín-Moreno, J. Bravo-Abad, F.J. García-Vidal, Enhanced millimeter-wave transmission through subwavelength hole arrays. Opt. Lett. 29, 2500–2502 (2004). doi:10.1364/OL.29.002500

    Article  Google Scholar 

  18. M. Beruete, M. Sorolla, I. Campillo, J.S. Dolado, Increase of the transmission in cut-off metallic hole arrays. IEEE Microw. Wirel. Compon. Lett. 15, 116–118 (2005). doi:10.1109/LMWC.2004.842852

    Article  Google Scholar 

  19. M. Beruete, M. Sorolla, I. Campillo, J.S. Dolado, L. Martín-Moreno, J. Bravo-Abad, F.J. García-Vidal, Enhanced millimeter wave transmission through quasioptical subwavelength perforated plates. IEEE Trans. Antennas Propag. 53, 1897–1903 (2005). doi:10.1109/TAP.2005.848689

    Article  Google Scholar 

  20. J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F.J. García-Vidal, L. Martín-Moreno, T.W. Ebbesen, How light emerges from an illuminated array of subwavelength holes. Nat. Phys. 2, 120–123 (2006). doi:10.1038/nphys213

    Article  Google Scholar 

  21. A.P. Hibbins, J.R. Sambles, C.R. Lawrence, Gratingless enhanced microwave transmission through a subwavelength aperture in a thick metal plate. Appl. Phys. Lett. 81, 4661 (2002). doi:10.1063/1.1527704

    Article  Google Scholar 

  22. M. Beruete, I. Campillo, J.S. Dolado, J.E. Rodríguez-Seco, E. Perea, M. Sorolla, Enhanced microwave transmission and beaming using a subwavelength slot in corrugated plate. IEEE Antennas Wirel. Propag. Lett. 3, 328–331 (2004). doi:10.1109/LAWP.2004.839461

    Article  Google Scholar 

  23. M. Beruete, M. Sorolla, I. Campillo, J.S. Dolado, Subwavelength slotted corrugated plate with enhanced quasioptical millimeter wave transmission. IEEE Microw. Wirel. Compon. Lett. 15, 286–288 (2005). doi:10.1109/LMWC.2005.845753

    Article  Google Scholar 

  24. M.J. Lockyear, A.P. Hibbins, J.R. Sambles, C.R. Lawrence, Surface-topography-induced enhanced transmission and directivity of microwave radiation through a subwavelength circular metal aperture. Appl. Phys. Lett. 84, 2040–2042 (2004). doi:10.1063/1.1688001

    Article  Google Scholar 

  25. M.J. Lockyear, A.P. Hibbins, J.R. Sambles, C.R. Lawrence, Enhanced microwave transmission through a single subwavelength aperture surrounded by concentric grooves. J. Opt. A Pure Appl. Opt. 7, S152–S158 (2005). doi:10.1088/1464-4258/7/2/020

    Article  Google Scholar 

  26. S. Steshenko, M. Zhadobov, R. Sauleau, A.A. Kirilenko, A.V. Boriskin, Beam-forming capabilities of waveguide feeds assisted by corrugated flanges. IEEE Trans. Antennas Propag. 63, 5548–5560 (2015). doi:10.1109/TAP.2015.2487990

    Article  MathSciNet  MATH  Google Scholar 

  27. M. Beruete, I. Campillo, J.S. Dolado, J.E. Rodríguez-Seco, E. Perea, F. Falcone, M. Sorolla, Very low-profile “bull’s eye” feeder antenna. IEEE Antennas Wirel. Propag. Lett. 4, 365–368 (2005). doi:10.1109/LAWP.2005.851104

    Article  Google Scholar 

  28. M. Beruete, I. Campillo, J.S. Dolado, E. Perea, F. Falcone, M. Sorolla, Dual-band low-profile corrugated feeder antenna. IEEE Trans. Antennas Propag. 54, 340–350 (2006). doi:10.1109/TAP.2005.863380

    Article  Google Scholar 

  29. M. Beruete, I. Campillo, J.S. Dolado, J.E. Rodríguez-Seco, E. Perea, F. Falcone, M. Sorolla, Low-profile corrugated feeder antenna. IEEE Antennas Wirel. Propag. Lett. 4, 378–380 (2005). doi:10.1109/LAWP.2005.857297

    Article  Google Scholar 

  30. M. Beruete, I. Campillo, J.S. Dolado, J.E. Rodríguez-Seco, E. Perea, F. Falcone, M. Sorolla, Very low profile and dielectric loaded feeder antenna. IEEE Antennas Wirel. Propag. Lett. 6, 544–548 (2007). doi:10.1109/LAWP.2007.909969

    Article  Google Scholar 

  31. M. Beruete, U. Beaskoetxea, M. Zehar, A. Agrawal, S. Liu, K. Blary, A. Chahadih, X.-L. Han, M. Navarro-Cía, D. Etayo, A. Nahata, T. Akalin, M. Sorolla, Terahertz corrugated and bull’s-eye antennas. IEEE Trans. Terahertz Sci. Technol. 3, 740–747 (2013). doi:10.1109/TTHZ.2013.2287096

    Article  Google Scholar 

  32. H. Lu, X. Lv, Z. Gao, Y. Liu, Experimental radiation characteristics of micromachined terahertz low-profile corrugated horn antenna. Microw. Opt. Technol. Lett. 57, 364–367 (2015). doi:10.1002/mop.28849

    Article  Google Scholar 

  33. N. Yu, J. Fan, Q.J.Q.J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, F. Capasso, Small-divergence semiconductor lasers by plasmonic collimation. Nat. Photonics 2, 564–570 (2008). doi:10.1038/nphoton.2008.152

    Article  Google Scholar 

  34. N. Yu, Q.J. Wang, M.A. Kats, J.A. Fan, S.P. Khanna, L. Li, A.G. Davies, E.H. Linfield, F. Capasso, Designer spoof surface plasmon structures collimate terahertz laser beams. Nat. Mater. 9, 730–735 (2010). doi:10.1038/nmat2822

    Article  Google Scholar 

  35. N. Yu, R. Blanchard, J. Fan, Q.J. Wang, C. Pflügl, L. Diehl, T. Edamura, S. Furuta, M. Yamanishi, H. Kan, F. Capasso, Plasmonics for laser beam shaping. IEEE Trans. Nanotechnol. 9, 11–29 (2010). doi:10.1109/TNANO.2009.2029099

    Article  Google Scholar 

  36. N. Yu, Q. Wang, F. Capasso, Beam engineering of quantum cascade lasers. Laser Photon. Rev. 6, 24–46 (2012). doi:10.1002/lpor.201100019

    Article  Google Scholar 

  37. Y. Monnai, D. Jahn, W. Withayachumnankul, M. Koch, H. Shinoda, Terahertz plasmonic Bessel beamformer. Appl. Phys. Lett. 21101 (2015). doi:10.1063/1.4905445

    Article  Google Scholar 

  38. C.J. Vourch, T.D. Drysdale, V-band “bull”s eye’ antenna for cubeSat applications. IEEE Antennas Wirel. Propag. Lett. 13, 1092–1095 (2014). doi:10.1109/LAWP.2014.2327852

    Article  Google Scholar 

  39. C. Huang, Z. Zhao, X. Luo, Application of “bull’s eye” corrugated grooves integrated with artificially soft surfaces structure in the patch antenna to improve radiation performance. Microw. Opt. Technol. Lett. 51, 1676–1679 (2009). doi:10.1002/mop.24443

    Article  Google Scholar 

  40. U. Beaskoetxea, V. Pacheco-Peña, B. Orazbayev, T. Akalin, S. Maci, M. Navarro-Cía, M. Beruete, 77 GHz high gain bull’s-eye antenna with sinusoidal profile. IEEE Antennas Wirel. Propag. Lett. 14, 205–208 (2015). doi:10.1109/LAWP.2014.2360215

    Article  Google Scholar 

  41. P. Baccarelli, P. Burghignoli, G. Lovat, S. Paulotto, A novel printed leaky-wave “bull-eye” antenna with suppressed surface-wave excitation, in IEEE Antennas and Propagation Society Symposium, 2004. IEEE (2004), pp. 1078–1081. doi:10.1109/APS.2004.1329861

  42. S.K. Podilchak, S. Paulotto, P. Burghignoli, Y.M.M. Antar, P. Baccarelli, A.P. Freundorfer, G. Lovat, A printed “bull-eye” leaky-wave antenna fed by a non-directive surface-wave launcher, in 2nd European Wireless Technology Conference, EuWIT (2009), pp. 81–83

    Google Scholar 

  43. S.K. Podilchak, P. Baccarelli, P. Burghignoli, A.P. Freundorfer, Y.M.M. Antar, Analysis and design of annular microstrip-based planar periodic leaky-wave antennas. IEEE Trans. Antennas Propag. 62, 2978–2991 (2014)

    Article  Google Scholar 

  44. S.K. Podilchak, Y.M.M. Antar, A. Freundorfer, P. Baccarelli, P. Burghignoli, S. Paulotto, G. Lovat, Planar antenna for continuous beam scanning and broadside radiation by selective surface wave suppression. Electron. Lett. 46, 613 (2010). doi:10.1049/el.2010.0074

    Article  Google Scholar 

  45. U. Beaskoetxea, S. Maci, M. Navarro-Cía, M. Beruete, 3D-printed 96 GHz bull’s-eye antenna with off-axis beaming. IEEE Trans. Antennas Propag. 65, 17–25 (2017). doi:10.1109/TAP.2016.2628322

    Article  Google Scholar 

  46. A.A. Oliner, A. Hessel, Guided waves on sinusoidally-modulated reactance surfaces. IRE Trans. Antennas Propag. 7, 201–208 (1959). doi:10.1109/TAP.1959.1144771

    Article  Google Scholar 

  47. D.R. Jackson, T. Zhao, J.T. Williams, A.A. Oliner, Leaky surface-plasmon theory for dramatically enhanced transmission through a subwavelength aperture, Part II: Leaky-wave antenna model, in IEEE Antennas Propagation Society International Symposium, Columbus, OH (2003), pp. 1095–1098. doi:10.1109/APS.2003.1219426

  48. A.A. Oliner, D.R. Jackson, Leaky surface-plasmon theory for dramatically enhanced transmission through a subwavelength aperture, Part I : Basic features, in Proceedings of IEEE AP-S Symp. Radio Science Meeting, Columbus, OH (2003), pp. 1095–1098. doi:10.1109/APS.2003.1219425

  49. D.R. Jackson, A.A. Oliner, T. Zhao, J.T.T. Williams, Beaming of light at broadside through a subwavelength hole: leaky wave model and open stopband effect. Radio Sci. 40, 1–12 (2005). doi:10.1029/2004RS003226

    Article  Google Scholar 

  50. C.H. Walter, Traveling Wave Antennas (McGraw Hill, 1965)

    Google Scholar 

  51. R.C. Johnson, H. Jasik, Antenna Engineering Handbook (McGraw Hill, 2007)

    Google Scholar 

  52. A. Ishimaru, Electromagnetic Wave Propagation, Radiation and Scattering (Prentice Hall, Englewood Cliffs, 1991)

    Google Scholar 

  53. L.O. Goldstone, A.A. Oliner, Leaky-wave antennas I: rectangular waveguides. IRE Trans. Antennas Propag. 7 (1959). doi:10.1109/TAP.1959.1144702

    Article  Google Scholar 

  54. F. Monticone, A. Alù, Leaky-wave theory, techniques, and applications: from microwaves to visible frequencies. Proc. IEEE 103, 793–821 (2015). doi:10.1109/JPROC.2015.2399419

    Article  Google Scholar 

  55. W.W. Hansen, Radiating Electromagnetic Waveguide (1946)

    Google Scholar 

  56. D.D. King, Dielectric image line. J. Appl. Phys. 23, 699–700 (1952). doi:10.1063/1.1702285

    Article  Google Scholar 

  57. M. Chen, B. Houshmand, T. Itoh, FDTD analysis of a metal-strip-loaded dielectric leaky-wave antenna. IEEE Trans. Antennas Propag. 45, 1294–1301 (1997). doi:10.1109/8.611250

    Article  Google Scholar 

  58. S. Kobayashi, R. Lampe, R. Mittra, S. Ray, Dielectric rod leaky-wave antennas for millimeter-wave applications. IEEE Trans. Antennas Propag. 29, 822–824 (1981). doi:10.1109/TAP.1981.1142669

    Article  Google Scholar 

  59. K.L. Klohn, R.E. Horn, H. Jacobs, E. Freibergs, Silicon waveguide frequency scanning linear array antenna. IEEE Trans. Microw. Theory Tech. 26, 764–773 (1978). doi:10.1109/TMTT.1978.1129484

    Article  Google Scholar 

  60. R.E. Horn, H. Jacobs, K.L. Klohn, E. Freigbergs, Single-frequency electronic-modulated analog line scanning using a dielectric antenna. IEEE Trans. Microw. Theory Tech. 30, 816–820 (1982). doi:10.1109/TMTT.1982.1131144

    Article  Google Scholar 

  61. F.K. Schwering, S.-T. Peng, Design of dielectric grating antennas for millimeter-wave applications. IEEE Trans. Microw. Theory Tech. 31, 199–209 (1983). doi:10.1109/TMTT.1983.1131458

    Article  Google Scholar 

  62. M. Beruete, I. Campillo, J.S. Dolado, E. Perea, F. Falcone, M. Sorolla, Very low-profile “bull’s-eye” feeder antenna. IEEE Antennas Wirel. Propag. Lett. 4, 365–368 (2005). doi:10.1109/LAWP.2005.851104

    Article  Google Scholar 

  63. M. Beruete, I. Campillo, J.S. Dolado, J.E. Rodríguez-Seco, E. Perea, M. Sorolla, Enhanced microwave transmission using a subwavelength slot in corrugated plate, in IEEE International Symposium on Antennas and Propagation, vol. 3A (2005), pp. 14–17. doi:10.1109/APS.2005.1552161

  64. A.A. Oliner, D.R. Jackson, Leaky-wave antennas, in Antenna Engineering Handbook, ed. by J.L. Volakis (Mc Graw-Hill, New York, 2007), pp. 11-1-56

    Google Scholar 

  65. M. Guglielmi, D.R. Jackson, Broadside radiation from periodic leaky-wave antennas. IEEE Trans. Antennas Propag. 41, 31–37 (1993). doi:10.1109/8.210112

    Article  Google Scholar 

  66. T. Rozzi, R. De Leo, A. Morini, Analysis of the “microstrip-loaded inset dielectric waveguide”, in IEEE MTT-S International Microwave Symposium Digest (1989), pp. 923–926. doi:10.1109/MWSYM.1989.38873

  67. T. Rozzi, L. Ma, Scattering by dipoles in inset dielectric guide and application to millimetric leaky wave antennas, in 17th European Microwave Conference 1987, pp. 543–548. doi:10.1109/EUMA.1987.333662

  68. G. Lovat, P. Burghignoli, D.R. Jackson, Fundamental properties and optimization of broadside radiation from uniform leaky-wave antennas. IEEE Trans. Antennas Propag. 54, 1442–1452 (2006). doi:10.1109/TAP.2006.874350

    Article  Google Scholar 

  69. P. Burghignoli, G. Lovat, D.R. Jackson, Analysis and optimization of leaky-wave radiation at broadside from a class of 1-D periodic structures. IEEE Trans. Antennas Propag. 54, 2593–2604 (2006). doi:10.1109/TAP.2006.880725

    Article  Google Scholar 

  70. U. Beaskoetxea, M. Navarro-Cía, M. Beruete, Broadband frequency and angular response of a sinusoidal bull’s eye antenna. J. Phys. D Appl. Phys. 49, 265103 (2016). doi:10.1088/0022-3727/49/26/265103

    Article  Google Scholar 

  71. M. Beruete, P. Rodríguez-Ulibarri, V. Pacheco-Peña, M. Navarro-Cía, A.E. Serebryannikov, Frozen mode from hybridized extraordinary transmission and Fabry-Perot resonances. Phys. Rev. B. 87, 205128 (2013). doi:10.1103/PhysRevB.87.205128

    Article  Google Scholar 

  72. N. Engheta, R.W. Ziolkowski, Metamaterials: Physics and Engineering Explorations (Wiley, 2006)

    Google Scholar 

  73. D.Y. Na, K.-Y. Jung, Y.B. Park, Transmission through an annular aperture surrounded with corrugations in a PEC plane. IEEE Antennas Wirel. Propag. Lett. 14, 179–182 (2015). doi:10.1109/LAWP.2014.2360130

    Article  Google Scholar 

  74. U. Beaskoetxea, M. Beruete, High aperture efficiency wide corrugations bull’s-eye antenna working at 60 GHz. IEEE Trans. Antennas Propag. 65(6), 3226–3230 (2017). doi:10.1109/TAP.2017.2696423

    Article  Google Scholar 

  75. M. Nannetti, F. Caminita, S. Maci, Leaky-wave based interpretation of the radiation from holographic surfaces, in IEEE Antennas and Propagation Society, AP-S International Symposium (Digest) (2007), pp. 5813–5816. doi:10.1109/APS.2007.4396873

  76. S. Cakmakyapan, A.E. Serebryannikov, H. Caglayan, E. Ozbay, Spoof-plasmon relevant one-way collimation and multiplexing at beaming from a slit in metallic grating. Opt. Express 20, 26636–26648 (2012). doi:10.1364/OE.20.026636

    Article  Google Scholar 

  77. B.H. Fong, J.S. Colburn, J.J. Ottusch, J.L. Visher, D.F. Sievenpiper, Scalar and tensor holographic artificial impedance surfaces. IEEE Trans. Antennas Propag. 58, 3212–3221 (2010). doi:10.1109/TAP.2010.2055812

    Article  Google Scholar 

  78. G. Minatti, M. Faenzi, E. Martini, F. Caminita, P. De Vita, D. Gonzalez-Ovejero, M. Sabbadini, S. Maci, Modulated metasurface antennas for space: synthesis, analysis and realizations. IEEE Trans. Antennas Propag. 63, 1288–1300 (2015). doi:10.1109/TAP.2014.2377718

    Article  MathSciNet  MATH  Google Scholar 

  79. J.J. Greffet, R. Carminati, K. Joulain, J.P. Mulet, M. Stéphane, Y. Chen, Coherent emission of light by thermal sources. Lett. Nat. 416, 61–64 (2002). doi:10.1103/PhysRevB.69.155412

    Article  Google Scholar 

  80. S. Han, Theory of thermal emission from periodic structures. Phys. Rev. B. 80, 1–10 (2009). doi:10.1103/PhysRevB.80.155108

    Article  Google Scholar 

  81. S. Krishna, S.D. Gunapala, S.V. Bandara, C. Hill, D.Z. Ting, Quantum dot based infrared focal plane arrays. Proc. IEEE 95, 1838–1852 (2007). doi:10.1109/JPROC.2007.900969

    Article  Google Scholar 

  82. J.A. Shackleford, R. Grote, M. Currie, J.E. Spanier, B. Nabet, Integrated plasmonic lens photodetector. Appl. Phys. Lett. 94, 8–11 (2009). doi:10.1063/1.3086898

    Article  Google Scholar 

  83. A. Harrer, B. Schwarz, R. Gansch, P. Reininger, H. Detz, T. Zederbauer, A.M. Andrews, W. Schrenk, G. Strasser, Plasmonic lens enhanced mid-infrared quantum cascade detector. Appl. Phys. Lett. 105 (2014). doi:10.1063/1.4901043

    Article  Google Scholar 

  84. T. Xu, Y.-K. Wu, X. Luo, L.J. Guo, Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging. Nat. Commun. 1, 59 (2010). doi:10.1038/ncomms1058

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Beruete .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Beruete, M., Beaskoetxea, U., Akalin, T. (2018). Flat Corrugated and Bull’s-Eye Antennas. In: Boriskin, A., Sauleau, R. (eds) Aperture Antennas for Millimeter and Sub-Millimeter Wave Applications. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-62773-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62773-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62772-4

  • Online ISBN: 978-3-319-62773-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics