Skip to main content

Holographic Imaging Approach

  • Chapter
  • First Online:
  • 2943 Accesses

Part of the book series: Signals and Communication Technology ((SCT))

Abstract

This chapter provides an overview over common categories of microwave holography systems. Terms like resolution or speckle are defined and design rules are presented. Performance and cost of the various microwave holography systems are discussed as well as their applications. A special focus is devoted to indirect holographic systems at millimeter wave frequencies. A setup using arrays of planar antenna coupled zero bias Schottky diodes as detectors is presented in detail.

This is a preview of subscription content, log in via an institution.

References

  1. D. Gabor, Holography—the reconstruction of wavefronts. Electron. Power 12(7), 230–234 (1966)

    Article  Google Scholar 

  2. D. Gabor, Holography, 1948–1971. Proc. IEEE 60(6), 655–668 (1972)

    Article  Google Scholar 

  3. J.W. Goodman, Introduction to Fourier Optics, 2nd edn. (McGraw-Hill, 1996)

    Google Scholar 

  4. E.N. Leith, Quasi-holographic techniques in the microwave region. Proc. IEEE 59(9), 1305–1318 (1971)

    Article  Google Scholar 

  5. E.N. Leith, Optical processing techniques for simultaneous pulse compression and beam sharpening. IEEE Trans. Aerosp. Electron. Syst. AES-4(6), 879–885 (1968)

    Article  Google Scholar 

  6. L. Rayleigh, XXXI. Investigations in optics, with special reference to the spectroscope. Phil. Mag. Ser. 5 8(49), 261–274 (1879)

    Google Scholar 

  7. A.W. Jones, J. Bland-Hawthorn, P.L. Shopbell, Towards a general definition for spectroscopic resolution, in ASP Conference on Astronomical Data Analysis Software and Systems IV (1995), pp. 503

    Google Scholar 

  8. A. Sommerfeld, Electrodynamics: Lectures on Theoretical Physics (Academic Press, 2013)

    Google Scholar 

  9. J.A. Stratton, L.J. Chu, Diffraction theory of electromagnetic waves. Phys. Rev. 56(1), 99–107 (1939)

    Article  MATH  Google Scholar 

  10. S. Silver, Microwave aperture antennas and diffraction theory. J. Opt. Soc. Am. 52(2), 131–139 (1962)

    Article  MathSciNet  Google Scholar 

  11. S. Gu, C. Li, X. Gao, Z. Sun, G. Fang, Three-dimensional image reconstruction of targets under the illumination of terahertz Gaussian beam—theory and experiment. IEEE Trans. Geosci. Remote Sens. 51(4), 2241–2249 (2013)

    Article  Google Scholar 

  12. L. Mandel, Interpretation of instantaneous frequencies. Am. J. Phys. 42(10), 840–846 (1974), http://scitation.aip.org/content/aapt/journal/ajp/42/10/10.1119/1.1987876

    Article  Google Scholar 

  13. R.L. Haupt, Thinned arrays using genetic algorithms. IEEE Trans. Antennas Propag. 42(7), 993–999 (1994)

    Article  Google Scholar 

  14. D.G. Leeper, Isophoric arrays-massively thinned phased arrays with well-controlled sidelobes. IEEE Trans. Antennas Propag. 47(12), 1825–1835 (1999)

    Article  Google Scholar 

  15. Y.T. Lo, S.W. Lee, Antenna Handbook: Theory, Applications, and Design (Springer Science & Business Media, 2013)

    Google Scholar 

  16. S. Caorsi, A. Lommi, A. Massa, M. Pastorino, Peak sidelobe level reduction with a hybrid approach based on GAs and difference sets. IEEE Trans. Antennas Propag. 52(4), 1116–1121 (2004)

    Article  Google Scholar 

  17. B.D. Steinberg, The peak sidelobe of the phased array having randomly located elements. IEEE Trans. Antennas Propag. 20(2), 129–136 (1972)

    Article  Google Scholar 

  18. B.D. Steinberg, Comparison between the peak sidelobe of the random array and algorithmically designed aperiodic arrays. IEEE Trans. Antennas Propag. 21(3), 366–370 (1973)

    Article  Google Scholar 

  19. K.C. Kerby, J.T. Bernhard, Sidelobe level and wideband behavior of arrays of random subarrays. IEEE Trans. Antennas Propag. 54(8), 2253–2262 (2006)

    Article  Google Scholar 

  20. C.A. Balanis, Antenna Theory: Analysis and Design (Wiley, 2005)

    Google Scholar 

  21. R.M. Leahy, B.D. Jeffs, On the design of maximally sparse beamforming arrays. IEEE Trans. Antennas Propag. 39(8), 1178–1187 (1991)

    Article  Google Scholar 

  22. I.J. Gupta, A.A. Ksienski, Effect of mutual coupling on the performance of adaptive arrays. IEEE Trans. Antennas Propag. 31(5), 785–791 (1983)

    Article  Google Scholar 

  23. P. Kabal, Time windows for linear prediction of speech. Technical Report (Telecomunications & Signal Processing Laboratory, Electrical & Computer Engineering, McGill University, Jan. 2003)

    Google Scholar 

  24. G. Tricoles, E.L. Rope, R. Hayward, Improved resolution in microwave holographic images. IEEE Trans. Antennas Propag. 29(2), 320–326 (1981)

    Article  Google Scholar 

  25. R.E. Abdel-Aal, Expansion of two-dimensional imaging apertures for resolution improvement in long-wavelength holography. IEE Proc. I (Commun. Speech Vision) 137(3), 157–162 (1990)

    Article  Google Scholar 

  26. M.D. Migliore, A simple introduction to compressed sensing/sparse recovery with applications in antenna measurements. IEEE Antennas Propag. Mag. 56(2), 14–26 (2014)

    Article  Google Scholar 

  27. G.R. Lockwood, J.R. Talman, S.S. Brunke, Real-time 3-D ultrasound imaging using sparse synthetic aperture beamforming. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45(4), 980–988 (1998)

    Article  Google Scholar 

  28. S.S. Ahmed, A. Schiessl, L. Schmidt, A novel fully electronic active real-time imager based on a planar multistatic sparse array. IEEE Trans. Microw. Theory Tech. 59(12), 3567–3576 (2011)

    Article  Google Scholar 

  29. H. Shigesawa, K. Takiyama, T. Toyonaga, O. Hirao, Microwave holography by synthetic aperture. Proc. IEEE 60(1), 137–139 (1972)

    Article  Google Scholar 

  30. W.E. Kock, Side-looking radar, holography, and doppler-free coherent radar. Proc. IEEE 56(2), 238–239 (1968)

    Article  Google Scholar 

  31. Y.K. Chan, V.C. Koo, An introduction to synthetic aperture radar (SAR). Prog. Electromagn. Res. B 2, 27–60 (2008)

    Article  Google Scholar 

  32. N. Gebert, G. Krieger, A. Moreira, Digital beamforming on receive: techniques and optimization strategies for high-resolution wide-swath SAR imaging. IEEE Trans. Aerosp. Electron. Syst. 45(2), 564–592 (2009)

    Article  Google Scholar 

  33. R.W. Larson, E.L. Johansen, J.S. Zelenka, Microwave holography. Proc. IEEE 57(12), 2162–2164 (1969)

    Article  Google Scholar 

  34. A. Tamminen, J. Ala-Laurinaho, A.V. Raisanen, Indirect holographic imaging at 310 GHz, in 2008 European Radar Conference, EuRAD-2008 (2008), pp. 168–171

    Google Scholar 

  35. J. Adametz, F. Gumbmann, L. Schmidt, Inherent resolution limit analysis for millimeter-wave indirect holographic imaging, in 2011 German Microwave Conference (GeMIC) (2011), pp. 177–182

    Google Scholar 

  36. X. Gao, C. Li, Z. Sun, G. Fang, Implementation of step-frequency continuous-wave scheme in millimeter-wave inline holography for interferences elimination. IEEE Antennas Wirel. Propag. Lett. 12, 1176–1179 (2013)

    Article  Google Scholar 

  37. A. Enayati, A. Tamminen, J. Ala-Laurinaho, A.V. Raisanen, G.A.E. Vandenbosch, W. de Raedt, THz holographic imaging: a spatial-domain technique for phase retrieval and image reconstruction, in 2012 IEEE MTT-S International Microwave Symposium Digest (MTT) (2012), pp. 199–201

    Google Scholar 

  38. B.L. Sharma, Metal-semiconductor Schottky Barrier Junctions and Their Applications (Springer Science & Business Media, 2013)

    Google Scholar 

  39. J.L. Hesler, T.W. Crowe, NEP and responsivity of THz zero-bias Schottky diode detectors, in 15th IEEE International Conference on Terahertz Electronics (IEEE, 2007), pp. 844–845

    Google Scholar 

  40. M. Hoefle, A. Penirschke, O. Cojocari, R. Jakoby, Advanced RF characterization of new planar high sensitive zero-bias Schottky diodes, in 2011 European Microwave Integrated Circuits Conference (EuMIC) (2011), pp. 89–92

    Google Scholar 

  41. L. Liu, JL. Hesler, H. Xu, A.W. Lichtenberger, R.M. Weikle, A broadband quasi-optical terahertz detector utilizing a zero bias Schottky diode. IEEE Microwave Wirel. Compon. Lett. 20(9), 504–506 (2010)

    Article  Google Scholar 

  42. V.I. Shashkin, Y.A. Drjagin, V.R. Zakamov, S.V. Krivov, L.M. Kukin, A.V. Murel, Y.I. Chechenin, Millimeter-wave detectors based on antenna-coupled low-barrier schottky diodes. Int. J. Infrared Millimeter Waves 28(11), 945–952 (2007)

    Article  Google Scholar 

  43. A. Semenov, O. Cojocari, H.-W. Hübers, F. Song, A. Klushin, A.-S. Müller, Application of zero-bias quasi-optical Schottky-diode detectors for monitoring short-pulse and weak terahertz radiation. IEEE Electron Device Lett. 31(7), 674–676 (2010)

    Article  Google Scholar 

  44. X. Fan, X. Pei, X. Xiong, Zero bias Schottky diodes use in high performance detection circuits, in 2011 International Conference on Electronics and Optoelectronics (ICEOE) (2011), pp. V3-27–V3-30

    Google Scholar 

  45. J. Montero-de-Paz, E. Ugarte-Munoz, L.E. Garcia-Munoz, D. Segovia-Vargas, D. Schoenherr, I. Oprea, A. Amrhein, O. Cojocari, H.L. Hartnagel, Millimeter-wave receiver based on a folded dipole antenna and Schottky diode for maximum power transfer, in 2012 6th European Conference on Antennas and Propagation (EUCAP) (2012), pp. 1259–1262

    Google Scholar 

  46. P.B. Roemer, W.A. Edelstein, C.E. Hayes, S.P. Souza, O.M. Mueller, The NMR phased array. Magn. Reson. Med. 16(2), 192–225 (1990)

    Article  Google Scholar 

  47. D.B. Rutledge, M.S. Muha, Imaging antenna arrays. IEEE Trans. Antennas Propag. 30(4), 535–540 (1982)

    Article  Google Scholar 

  48. C. Schildbach, J. Schür, L.-P. Schmidt, Broadband detector array concept for 3D holographic imaging at THz frequencies, in 2013 European Microwave Conference (EuMC) (2013), pp. 1243–1246

    Google Scholar 

  49. V.A. Petriakov, F.F. Sizov, O. Golenkov, S.A. Dvoretskii, D.S. Krasilnikov, Direct detection MM-wave linear antenna array on the base of hemispherical lens antenna elements coupled with narrow-gap hot-carrier bolometers, in 2013 International Kharkov Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves (MSMW), (2013), pp. 79–81

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Schildbach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Schildbach, C., Schmidt, LP. (2018). Holographic Imaging Approach. In: Boriskin, A., Sauleau, R. (eds) Aperture Antennas for Millimeter and Sub-Millimeter Wave Applications. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-62773-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62773-1_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62772-4

  • Online ISBN: 978-3-319-62773-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics