Skip to main content

Terahertz Antennas and Feeds

  • Chapter
  • First Online:

Part of the book series: Signals and Communication Technology ((SCT))

Abstract

Terahertz antennas present a different set of challenges to the antenna designer typically striving for very high performance while at the very limit of the chosen fabrication process. Many of the same design techniques used at lower frequencies are still applied, but fabrication constraints impose significant limitations on the type of structure that can be used, forcing the designer to consider unique fabrication processes or completely new antenna structures. Through advances in fabrication and computational techniques, the variety of terahertz antennas is growing. This chapter presents a range of antennas applied at these frequencies from 1.9 THz horn antennas to superconducting planar arrays. The chapter will cover different antenna technologies and feeds such as corrugated horn antennas, smooth-walled profiled horn antennas, multi-flare angle horn antennas, lens antennas, microlens leaky wave antennas, metasurface antennas, antenna arrays, off-chip antennas, and others. It will detail theory, simulation, fabrication techniques, and state-of-the-art antenna results in all these different technologies at millimeter and terahertz frequencies. The chapter will also provide details for terahertz antennas in the context of terahertz systems.

This is a preview of subscription content, log in via an institution.

References

  1. A. Love, Electromagnetic Horn Antennas (IEEE Press, 1976)

    Google Scholar 

  2. P. Clarricoats, A. Olver, Corrugated Horns for Microwave Antennas (P. Peregrinus, 1984)

    Google Scholar 

  3. A.D. Olver, P.J. Clarricoats, A.A. Kishk, L. Shafai, Microwave Horns and Feeds (Institution of Engineering and Technology, 1994)

    Google Scholar 

  4. T.S. Bird, C. Granet, Profiled horns and feeds, in Handbook of Reflector Antennas and Feed Systems: Volume 2—Feed Systems, ed. by L. Shafai et al. (Artech House, 2013)

    Google Scholar 

  5. P.F. Goldsmith, Quasioptical Systems: Gaussian Beam, Quasioptical Propagation, and Applications (IEEE Press/Chapman & Hall, New York, 1998)

    Book  Google Scholar 

  6. A.W. Love The diagonal horn antenna. Microw. J. V, 117–122 (1962)

    Google Scholar 

  7. J.F. Johansson, N.D. Whyborn, The diagonal horn as a sub-millimeter wave antenna. IEEE Trans. Microw. Theory Tech. 40(5), 795–800 (1992)

    Article  Google Scholar 

  8. T. Reck, C. Jung-Kubiak, J. Siles, C. Lee, R. Lin, G. Chattopadhyay, I. Mehdi, K. Cooper, A silicon micromachined eight-pixel transceiver array for submillimeter-wave radar. IEEE Trans. THz Sci. Technol. 5(2), 197–206 (2015)

    Article  Google Scholar 

  9. P.D. Potter, A new horn antenna with suppressed sidelobes and equal beamwidths. NASA Technical Documents, Technical report No. 32-354, 25 Feb 1963

    Google Scholar 

  10. P. Kittara, A. Jiralucksanawong, G. Yassin, S. Wangsuya, J. Leech, The design of potter horns for THz applications using a genetic algorithm. Int. J. Infrared Milli. Waves 28(12), 1103–1114 (2007)

    Article  Google Scholar 

  11. H.M. Pickett, J.C. Hardy, J. Farhoomand, Characterization of a dual-mode horn for submillimeter wavelengths. IEEE Trans. Microw. Theory Tech. 32(8), 936–937 (1984)

    Article  Google Scholar 

  12. J.F. Johansson, A Gauss-Laguerre analysis of the dual-mode (‘Potter’) horn, in 4th International Symposium on Space Terahertz Technology, Apr 1993, p. 134

    Google Scholar 

  13. B.M. Thomas, Design of corrugated conical horns. IEEE Trans. Antenna Propag. 26(2), 367–372 (1978)

    Article  Google Scholar 

  14. C. Granet, G.L. James, Design of corrugated horns: a primer. IEEE Antennas Propag. Mag. 47(2), 76–84 (2005)

    Article  Google Scholar 

  15. G.L. James, Analysis and design of TE11-to-HE11 corrugated cylindrical waveguide mode converters. IEEE Trans. Microw. Theory Tech. 29(10), 1059–1066 (1981)

    Article  Google Scholar 

  16. G. James, Design of wide-band compact corrugated horns. IEEE Trans. Antennas Propag. 32(10), 1134–1138 (1984)

    Article  Google Scholar 

  17. G.L. James, B.M. Thomas, TE11 to HE11 cylindrical waveguide mode converters using ring-loaded slots. IEEE Trans. Microw. Theory Tech. 30(3), 278–285 (1982)

    Article  Google Scholar 

  18. X. Zhang, Design of conical corrugated feed horns for wide-band high-frequency applications. IEEE Trans. Microw. Theory Tech. 41(8), 1263–1274 (1993)

    Article  Google Scholar 

  19. A.D. Olver, J. Xiang, Design of profiled corrugated horns. IEEE Trans. Antennas Propag. 36(7), 936–940 (1988)

    Article  Google Scholar 

  20. R. Gonzalo, J. Teniente, C. del Rio, Improved radiation pattern performance of Gaussian profiled horn antennas. IEEE Trans. Antennas Propag. 50(11), 1505–1513 (2002)

    Article  Google Scholar 

  21. G.G. Gentili, R. Nesti, G. Pelosi, V. Natale, Compact dual-profile corrugated circular waveguide horn. Electron. Lett. 36(6), 486–487 (2000)

    Article  Google Scholar 

  22. B. Maffei et al., Planck pre-launch status: HFI beam expectations from the optical optimisation of the focal plane. A & A 520, A12 (2010)

    Article  Google Scholar 

  23. J.E. McKay, D.A. Robertson, P.A.S. Cruickshank, R.I. Hunter, D.R. Bolton, R.J. Wylde, G.M. Smith, Compact wideband corrugated feedhorns with ultra-low sidelobes for very high performance antennas and quasi-optical systems. IEEE Trans. Antennas Propag. 61(4), 1714–1721 (2013)

    Article  Google Scholar 

  24. R.W. Haas, D. Brest, H. Mueggenburg, L. Lang, D. Heimlich, Fabrication and performance of MMW and SMMW platelet horn arrays. Int. J. Infrared Milli. Waves 14(11), 2289–2294 (1993)

    Article  Google Scholar 

  25. M. Kangas, K. Copsey, P. Lubin, A modular 100-GHz high-gain scalar corrugated nonbonded platelet antenna. IEEE Antennas Wirel. Propag. Lett. 4, 89–92 (2005)

    Article  Google Scholar 

  26. M.M. Kangas, M. Ansmann, B. Horgan, N. Lemaster, R. Leonardi, A. Levy, P. Lubin, J. Marvil, P. McCreary, T. Villela, A 31 pixel flared 100-GHz high-gain scalar corrugated nonbonded platelet antenna array. IEEE Antennas Wirel. Propag. Lett. 4, 245–248 (2005)

    Article  Google Scholar 

  27. L. Lucci, R. Nesti, G. Pelosi, S. Selleri, A stackable constant-width corrugated horn design for high-performance and low-cost feed arrays at millimeter wavelengths. IEEE Antennas Wirel. Propag. Lett. 11, 1162–1165 (2012)

    Article  Google Scholar 

  28. J.W. Britton, J.P. Nibarger, K.W. Yoon, J.A. Beall, D. Becker, H.-M. Cho, G.C. Hilton, J. Hubmayr, M.D. Niemack, K.D. Irwin, Corrugated silicon platelet feed horn array for CMB polarimetry at 150 GHz, in Proceedings of SPIE, vol. 7741, 2010, pp. 77 410T–77 410T-11

    Google Scholar 

  29. J.P. Nibarger, J.A. Beall, D. Becker, J. Britton, H.-M. Cho, A. Fox, G.C. Hilton, J. Hubmayr, D. Li, J. McMahon, M.D. Niemack, K.D. Irwin, J. Van Lanen, K.W. Yoon, An 84 pixel all-silicon corrugated feedhorn for CMB measurements. J. Low Temp. Phys. 167(3), 522–527 (2012)

    Article  Google Scholar 

  30. C. Lee, G. Chattopadhyay, E. Decrossas, A. Peralta, I. Mehdi, C.A. Leal-Sevillano, M.A. Pino, N. Llombart, Terahertz antenna arrays with silicon micromachined-based microlens antenna and corrugated horns, International Workshop on Antenna Technology (iWAT), Mar 2015, pp. 70–73

    Google Scholar 

  31. E. Decrossas, T. Reck, C. Lee, C. Jung-Kubiak, I. Mehdi,G. Chattopadhyay, “Evaluation of 3d printing technology for corrugated horn antenna manufacturing,” in IEEE Int. Symp Electromagn. Compat. 2, (2016)

    Google Scholar 

  32. E. Decrossas, T. Reck, C. Lee, C. Jung-Kubiak, I. Mehdi, and G. Chattopadhyay, “Development of w-band horn antennas using 3d printing technologies,” in IEEE Int. Symp. Antennas Propagation Soc. 2,(2016)

    Google Scholar 

  33. T. Reck, C. Jung-Kubiak, J. Gill, G. Chattopadhyay, Measurement of silicon micromachined waveguide components at 500–750 GHz. IEEE Trans. THz Sci. Technol. 4(1), 33–38 (2014)

    Article  Google Scholar 

  34. J. Leech, B.K. Tan, G. Yassin, P. Kittara, S. Wangsuya, Experimental Investigation of a low-cost, high performance focal-plane horn array. IEEE Trans. Terahertz Sci. Technol. 2(1), 61–70 (2012)

    Article  Google Scholar 

  35. N. Chahat, T. Reck, C. Jung-Kubiak, T. Nguyen, R. Sauleau, G. Chattopadhyay, 1.9 THz multi-flare angle horn optimization for space instruments. IEEE Trans. Terahertz Sci. Technol. 5(6), 914–921 (2015)

    Article  Google Scholar 

  36. N. Chahat, R.E. Hodges, J. Sauder, M. Thomson, E. Peral, Y. Rahmat-Samii, CubeSat Deployable Ka-band mesh reflector antenna development for Earth science missions. IEEE Trans. Antennas Propag. 64(6), 2083–2093 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  37. C. Granet, G.L. James, R. Bolton, G. Moorey, A smooth-walled spline-profile horn as an alternative to the corrugated horn for wide band millimeter-wave applications. IEEE Trans. Antennas Propag. 52(3), 848–854 (2004)

    Article  Google Scholar 

  38. A. Rolland, M. Ettorre, M. Drissi, L. Le Coq, R. Sauleau, Optimization of reduced-size smooth-walled conical horns using BoR-FDTD and genetic algorithm. IEEE Trans. Antennas Propag. 58(9), 3094–3100 (2010)

    Article  Google Scholar 

  39. T.G. Jurgens, J.G. Blaschak, G.W. Saewert, Bodies of revolution, in Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd edn., ch. 12, ed. by A. Taflove, S.C. Hagness (Artech House, Boston, MA, 2005), pp. 517–552

    Google Scholar 

  40. M. Celuch, W.K. Gwarek, Industrial design of axisymmetrical devices using a customized solver from RF to optical frequency bands. IEEE Microw. Mag. 9, 150–159 (2008)

    Google Scholar 

  41. G. Godi, R. Sauleau, L. Le Coq, D. Thouroude, Design and optimization of three-dimensional integrated lens antennas with genetic algorithm. IEEE Trans. Antennas Propag. 55(3), 770–775 (2007)

    Article  Google Scholar 

  42. G.M. Rebeiz, D.P. Kasilingam, Y. Guo, P.A. Stimson, D.B. Rutledge, Monolithic millimeter-wave two-dimensional horn imaging arrays. IEEE Trans. Antennas Propag. 38(9), 1473–1482 (1990)

    Article  Google Scholar 

  43. G.M. Rebeiz, Millimeter-wave and terahertz integrated circuit antennas. Proc. IEEE 80(11), 1748–1770 (1992)

    Article  Google Scholar 

  44. D.F. Filipovic, S.S. Gearhart, G.M. Rebeiz, Double-slot antennas on extended hemispherical and elliptical silicon dielectric lenses. IEEE Trans. Microw. Theory Tech. 41(10), 1738–1749 (1993)

    Article  Google Scholar 

  45. T.H. Buttgenbach, An improved solution for integrated array optics in quasi-optical mm and submm receivers: the hybrid antenna. IEEE Trans. Microw. Theory Tech. 41(10), 1750–1760 (1993)

    Article  MathSciNet  Google Scholar 

  46. R. Compton, R. McPhedran, Z. Popovic, G. Rebeiz, P. Tong, D. Rutledge, Bow-tie antennas on a dielectric half-space: theory and experiment. IEEE Trans. Antennas Propag. 35(6), 622–631 (1987)

    Article  Google Scholar 

  47. R. DuHamel, D. Isbell, Broadband logarithmically periodic antenna structures, 1958 IRE International Convention Record, New York, NY, USA, 1957, pp. 119–128

    Google Scholar 

  48. J. Dyson, The equiangular spiral antenna. IRE Trans. Antennas Propag. 7(2), 181–187 (1959)

    Article  Google Scholar 

  49. T.H. Buttgenbach, R.E. Miller, M.J. Wengler, D.M. Watson, T.G. Phillips, A broad-band low-noise SIS receiver for submillimeter astronomy. IEEE Trans. Microw. Theory Tech. 36(12), 1720–1726 (1988)

    Article  Google Scholar 

  50. D.F. Filipovic, G.P. Gauthier, S. Raman, G.M. Rebeiz, Off-axis properties of silicon and quartz dielectric lens antennas. IEEE Trans. Antennas Propag. 45(5), 760–766 (1997)

    Article  Google Scholar 

  51. G. Rebeiz, W. Regehr, D. Rutledge, R. Savage, N. Luhmann, Submillimeter-wave antennas an thin membranes, in Antennas and Propagation Society International Symposium, 1987, pp. 1194–1197

    Google Scholar 

  52. D. Rutledge, M. Muha, Imaging antenna arrays. IEEE Trans. Antennas Propag. 30(4), 535–540 (1982)

    Article  Google Scholar 

  53. N. Llombart, A. Neto, THz time-domain sensing: the antenna dispersion problem and a possible solution. IEEE Trans. THz Sci. Technol. 2(4), 416–423 (2012)

    Article  Google Scholar 

  54. A. Neto, N. Llombart, J.J.A. Baselmans, A. Baryshev, S.J.C. Yates, Demonstration of the leaky lens antenna at submillimeter wavelengths. IEEE Trans. THz Sci. Technol. 4(1), 26–32 (2014)

    Article  Google Scholar 

  55. N. Llombart, G. Chattopadhyay, A. Skalare, I. Mehdi, Novel terahertz antenna based on a silicon lens fed by a leaky wave enhanced waveguide. IEEE Trans. Antennas Propag. 59(6), 2160–2168 (2011)

    Article  Google Scholar 

  56. N. Llombart et al., Silicon micromachined lens antenna for THz integrated heterodyne arrays. IEEE Trans. THz Sci. Technol. 3(5), 515–523 (2013)

    Article  Google Scholar 

  57. M. Alonso-DelPino et al., Design guidelines for a terahertz silicon micro-lens antenna. IEEE Antennas Wirel. Propag. Lett. 12, 84–87 (2013)

    Article  Google Scholar 

  58. D.R. Jackson, A.A. Oliner, A leaky-wave analysis of the high-gain printed antenna configuration. IEEE Trans. Antennas Propag. 36(7), 905–910 (1988)

    Article  Google Scholar 

  59. A. Neto, UWB, non dispersive radiation from the planarly fed leaky lens antenna—Part 1: Theory and design. IEEE Trans. Antennas Propag. 58(7), 2238–2247 (2010)

    Article  Google Scholar 

  60. N. Llombart, A. Neto, G. Gerini, M. Bonnedal, P. De Maagt, Impact of mutual coupling in leaky wave enhanced imaging arrays. IEEE Trans. Antennas Propag. 56(4), 1201–1206 (2008)

    Article  Google Scholar 

  61. M. Qiu, G.V. Eleftheriades, M. Hickey, A reduced surface-wave twin arc-slot antenna element on electrically thick substrates, in Proceedings of IEEE AP-S Society International Symposium, Boston, MA, USA, 2001, vol. 3, pp. 268–271

    Google Scholar 

  62. C. Lee, G. Chattopadhyay, K. Cooper, I. Mehdi, Curvature control of silicon microlens for THz dielectric antenna, in 37th International Conference on Infrared Milli. THz Waves (IRMMW-THz), Wollongong, NSW, 2012, pp. 1–2

    Google Scholar 

  63. C. Lee, G. Chattopadhyay, M. Alonso-DelPino, N. Llombart, “6.4 mm Diameter silicon micromachined lens for THz dielectric antenna,” 39th Int. Conf. Infrared Millimeter, and THz waves (IRMMW-THz), Tucson, AZ, 2014, pp. 1–1

    Google Scholar 

  64. B. Fong, J. Colburn, J. Ottusch, J. Visher, D. Sievenpiper, Scalar and tensor holographic artificial impedance surfaces. IEEE Trans. Antennas Propag. 58(10), 3212–3221 (2010)

    Article  Google Scholar 

  65. G. Minatti, M. Faenzi, E. Martini, F. Caminita, P. De Vita, D. González-Ovejero, M. Sabbadini, S. Maci, Modulated metasurface antennas for space: synthesis, analysis and realizations. IEEE Trans. Antennas Propag. 63(4), 1288–1300 (2015)

    Article  MathSciNet  Google Scholar 

  66. D. Sievenpiper, J. Colburn, B. Fong, J. Ottusch, J. Visher, Holographic artificial impedance surfaces for conformal antennas, in Proceedings of IEEE AP-S Society International Symposium, vol. 1B, 2005, vol. 1B, pp. 256–259

    Google Scholar 

  67. A. Oliner, A. Hessel, Guided waves on sinusoidally-modulated reactance surfaces. IRE Trans. Antennas Propag. 7(5), 201–208 (1959)

    Article  Google Scholar 

  68. G. Chattopadhyay, Technology, capabilities, and performance of low power terahertz sources. IEEE Trans. THz Sci. Technol. 1(1), 33–53 (2011)

    Article  Google Scholar 

  69. M. Esquius-Morote, J. Gomez-Diaz, J. Perruisseau-Carrier, Sinusoidally modulated graphene leaky-wave antenna for electronic beamscanning at THz. IEEE Trans. THz Sci. Technol. 4(1), 116–122 (2014)

    Article  Google Scholar 

  70. C. Jung, B. Thomas, C. Lee, A. Peralta, J. Gill, K. Cooper, G. Chattopadhyay, E. Schlecht, R. Lin, I. Mehdi, Compact submillimeter-wave receivers made with semiconductor nanofabrication technologies, in Proceedings of IEEE International Microwave Symposium (IMS), June 2011, pp. 1–4

    Google Scholar 

  71. D. González-Ovejero, T.J. Reck, C.D. Jung-Kubiak, M. Alonso-DelPino, G. Chattopadhyay, Silicon micromachined modulated metasurface antennas in the terahertz range, in Proceedings of 10th European Conference on Antennas and Propagation, 2016, pp. 1–4

    Google Scholar 

  72. D. González-Ovejero, T.J. Reck, C.D. Jung-Kubiak, M. Alonso-DelPino, G. Chattopadhyay, A class of silicon micromachined metasurface for the design of high-gain terahertz antennas, in Proceedings of IEEE AP-S Society International Symposium, 2016, pp. 1–4

    Google Scholar 

  73. R. King, D.V. Thiel, K. Park, The synthesis of surface reactance using an artificial dielectric. IEEE Trans. Antennas Propag. 31(3), 471–476 (1983)

    Article  Google Scholar 

  74. H. Bilow, Guided waves on a planar tensor impedance surface. IEEE Trans. Antennas Propag. 51(10), 2788–2792 (2003)

    Article  Google Scholar 

  75. D. González-Ovejero, S. Maci, Gaussian ring basis functions for the analysis of modulated metasurface antennas. IEEE Trans. Antennas Propag. 63(9), 3982–3993 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  76. ANSYS Inc., HFSS, Version 15, Pittsburgh, PA, 2015

    Google Scholar 

  77. A. Tang et al., A CMOS D-band transmitter with IF envelope feed-forward pre-distortion and injection locked frequency tripling synthesizer. IEEE Trans. Microw. Theory Tech. 60(12), 4129–4137 (2012)

    Article  Google Scholar 

  78. A. Tang et al., A low overhead self-healing embedded system for ensuring high performance yield and long-term sustainability of a 60 GHz 4 Gb/s Radio-on-a-Chip, in IEEE International Solid-State Circuits Conference Digest of Technical Papers, Feb 2012, pp. 316–318

    Google Scholar 

  79. N. Chahat, A. Tang, C. Lee, R. Sauleau, G. Chattopadhyay, Efficient CMOS systems with beam–lead interconnects for space instruments. IEEE Trans. Terahertz Sci. Technol. 5(4), 637–644 (2015)

    Article  Google Scholar 

  80. A. Tang, N. Chahat et al., A 65 nm CMOS 140 GHz 27.3 dBm EIRP transmit array with membrane antenna for highly scalable multi-chip phase arrays, in Proc. IEEE International Microwave Symposium (IMS), Tampa, FL, 2014

    Google Scholar 

  81. A. Tang, N. Chahat, CMOS mm-wave transceiver techniques beyond 50 GHz, in Proceedings of IEEE Global Conference on Signal and Information Processing (GlobalSIP), Austin, TX, 2013, pp. 715–718

    Google Scholar 

  82. A. Tang et al., CMOS (Sub)-mm-wave system-on-chip for exploration of deep space and outer planetary systems, in Proceedings of IEEE Custom Integrated Circuits Conference, San Jose, CA, 2014

    Google Scholar 

  83. A. Tang et al., A 95 GHz centimeter scale precision confined pathway system-on-chip navigation processor for autonomous vehicles in 65 nm CMOS, in Proceedings of IEEE International Microwave Symposium (IMS), Phoenix, AZ, 2015, pp. 1–3

    Google Scholar 

  84. R.R. Cladwell, M. Kamionkowski, Echoes from the Big Bang. Sci. Am. 38–43 (2001)

    Google Scholar 

Download references

Acknowledgments

Part of this work was supported by NASA Jet Propulsion Laboratory (JPL), CA. and “National Aeronautics and Space Administration” (NASA). Part of this work was also supported by a Marie Curie International Outgoing Fellowship within the 7th European Community Framework Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Goutam Chattopadhyay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Chattopadhyay, G., Alonso-delPino, M., Chahat, N., González-Ovejero, D., Lee, C., Reck, T. (2018). Terahertz Antennas and Feeds. In: Boriskin, A., Sauleau, R. (eds) Aperture Antennas for Millimeter and Sub-Millimeter Wave Applications. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-62773-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62773-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62772-4

  • Online ISBN: 978-3-319-62773-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics