Skip to main content

Potential Application of Nano Zero Valent Iron in Environmental Protection

  • Chapter
  • First Online:
Advances in Applications of Industrial Biomaterials

Abstract

Nanoscale zero-valent iron particles (nZVI) have been studied intensively in recent years as a new and promising technology for environmental remediation. nZVI is a readily available and low-cost reducing agent, which also has high reactivity towards a broad range of contaminants. Nonetheless, pivotal points to be addressed are its stability against aggregation, its mobility in subsurface environments, and its longevity. This chapter gives an extensive review of the progressive research and development activities in regard to environmental protection through iron-based nanoparticles. Methods for synthesis of different types of supported iron-based nanomaterial, as well as their characterization, are discussed. The lack of knowledge is evident regarding use of the same nanomaterials for treating different environmental mediums and various chemical species. Thus, the chapter includes two case studies, covering the usage of several supported nZVI for remediating solid porous media polluted with metals, as well as for treating wastewaters containing dye molecules. Case studies also indicate a broader applicability of these processed materials, emphasizing the possibility for further commercialization of supported nZVI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Amrani WA, Lim PE, Seng CE, Ngah WSW (2014) Factors affecting bio-decolorization of azo dyes and COD removal in anoxic–aerobic REACT operated sequencing batch reactor. J Taiwan Inst Chem Eng 45:609–616

    Article  Google Scholar 

  • ANS (American National Standard) ANSI/ANS 16.1 (1986) American National Standard for the measurement of the leachability of solidified low-level radioactive wastes by short-term tests procedures. American National Standards Institute, New York

    Google Scholar 

  • ASTM D1557-00 Standard test method for laboratory compaction characteristics of soil using modified effort American Society for Testing Materials. Annual book of ASTM standards: ASTMD1557-91, vol 4.08. ASTM, Philadelphia

    Google Scholar 

  • Babuponnusami A, Muthukumar K (2014) A review on Fenton and improvements to the Fenton process for wastewater treatment. J Environ Chem Eng 2(1):557–572

    Article  Google Scholar 

  • Chang MC, Shu HY, Yu HH (2006) An integrated technique using zero-valent iron and UV/H2O2 sequential process for complete decolorization and mineralization of C.I. Acid Black 24 wastewater. J Hazard Mater 138:574–581

    Article  Google Scholar 

  • Chen Z, Jin X, Chen Z, Megharaj M, Naidu R (2011) Removal of methyl orange from aqueous solution using bentonite-supported nanoscale zero-valent iron. J Colloid Interface Sci 363:601–607

    Article  Google Scholar 

  • Chen Z, Wang T, Jin X, Chen Z, Megharaj M, Naidu R (2013) Multifunctional kaolinite-supported nanoscale zero-valent iron used for the adsorption and degradation of crystal violet in aqueous solution. J Colloid Interface Sci 398:59–66

    Article  Google Scholar 

  • Choi K, Lee W (2012) Enhanced degradation of trichloroethylene in nano-scale zero valent iron Fenton system with Cu(II). J Hazard Mater 211–212:146–153

    Article  Google Scholar 

  • Choi CJ, Dong XL, Kim BK (2001) Microstructure and magnetic properties of Fe nanoparticles synthesized by chemical vapor condensation. Mater Trans 42(10):2046–2049

    Article  Google Scholar 

  • Christian P, Kammer F, Baalousha M, Hofmann T (2008) Nanoparticles: structure, properties, preparation and behaviour in environmental media. Ecotoxicology 17(5):326–343

    Article  Google Scholar 

  • Crane RA, Scott TB (2012) Nanoscale zero-valent iron: future prospects for an emerging water treatment technology. J Hazard Mater 211–212:112–125

    Article  Google Scholar 

  • Debrassi A, Correa AF, Baccarin T, Nedelko N, Slawska-Waniewska A, Sobczak K, Dłuzewski P, Greneche JM, Rodrigues CA (2012) Removal of cationic dyes from aqueous solutions using N-benzyl-O-carboxymethyl chitosan magnetic nanoparticles. Chem Eng J 183:284–293

    Article  Google Scholar 

  • Duarte F, Morais V, Maldonado-Hódar FJ, Madeira LM (2013) Treatment of textile effluents by the heterogeneous Fenton process in a continuous packed-bed reactor using Fe/activated carbon as catalyst. Chem Eng J 232:34–41

    Article  Google Scholar 

  • Environment Canada (1991) Proposed evaluation protocol for cement-based solidified wastes, Environmental Protection Series. Report No. EPS 3/HA/9

    Google Scholar 

  • Feng C, Khulbe KC, Matsuura T, Tabe S, Ismail AF (2013) Preparation and characterization of electro-spun nanofiber membranes and their possible applications in water treatment. Sep Purif Technol 102:118–135

    Article  Google Scholar 

  • Fu F, Wang Q, Tang B (2010) Effective degradation of C.I. Acid Red 73 by advanced Fenton process. J Hazard Mater 174:17–22

    Article  Google Scholar 

  • Fu F, Han W, Tang B, Hu M, Cheng Z (2013) Insights into environmental remediation of heavy metal and organic pollutants: simultaneous removal of hexavalent chromium and dye from wastewater by zero-valent iron with ligand-enhanced reactivity. Chem Eng J 232:534–540

    Article  Google Scholar 

  • Guimarães JR, Maniero MG, Nogueira de Araújo R (2012) A comparative study on the degradation of RB-19 dye in an aqueous medium by advanced oxidation processes. J Environ Manage 110:33–39

    Article  Google Scholar 

  • Gupta VK, Kumar R, Nayak A, Saleh TA, Barakat MA (2013) Adsorptive removal of dyes from aqueous solution onto carbon nanotubes: a review. Adv Colloid Interface Sci 193–194:24–34

    Article  Google Scholar 

  • He F, Zhao D (2005) Preparation and characterization of a new class of starch stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water. Environ Sci Technol 39:3314–3320

    Article  Google Scholar 

  • Hoag GE, Collins JB, Holcomb JL, Hoag JR, Nadagouda MN, Varma RS (2009) Degradation of bromothymol blue by ‘greener’ nano-scale zero-valent iron synthesized using tea polyphenols. J Mater Chem 19:8671–8677

    Article  Google Scholar 

  • Hua M, Zhang S, Pan B, Zhang W, Lv L, Zhang Q (2012) Heavy metal removal from water/wastewater by nanosized metal oxides: a review. J Hazard Mater 211–212:317–331

    Article  Google Scholar 

  • Jamei MR, Khosravi MR, Anvaripour B (2014) A novel ultrasound assisted method in synthesis of NZVI particles. Ultrason Sonochem 21(1):226–233

    Article  Google Scholar 

  • Kanel SR, Nepal D, Manning B, Choi H (2007) Transport of surface-modified iron nanoparticle in porous media and application to arsenic(III) remediation. J Nanopart Res 9(5):725–735

    Article  Google Scholar 

  • Karlsson MNA, Deppert K, Wacaser BA, Karlsson LS, Malm JO (2005) Size controlled nanoparticles by thermal cracking of iron pentacarbonyl. Appl Phys A Mater Sci Process 80(7):1579–1583

    Article  Google Scholar 

  • Kerkez D, Tomašević D, Kozma G, Bečelić-Tomin M, Prica M, Rončević S, Kukovecz Á, Dalmacija D, Kónya Z (2014a) Three different clay-supported nanoscale zero-valent iron materials for industrial azo dye degradation: a comparative study. J Taiwan Inst Chem Eng 45:2451–2461

    Article  Google Scholar 

  • Kerkez Đ, Bečelić-Tomin M, Prica M, Tomašević D, Pucar G, Dalmacija B, Rončević S (2014b) Decolourization of Reactive Red 120 by an advanced Fenton process in conjunction with ultrasound. Paper presented on International symposium on graphic engineering and design “GRID2014”, November 13–14, Novi Sad, Serbia

    Google Scholar 

  • Kim TS, Sun W, Choi CJ, Lee BT (2003) Microstructure of Fe nanoparticles fabricated by chemical vapor condensation. Rev Adv Mater Sci 5(5):481–486

    Google Scholar 

  • Kim SA, Kamala-Kannan S, Lee KJ, Park YJ, Shea PJ, Lee WH, Kim HM, Oh BT (2013) Removal of Pb(II) from aqueous solution by a zeolite-nanoscale zero-valent iron composite. Chem Eng J 217:54–60

    Article  Google Scholar 

  • Kirschling TL, Golas PL, Unrine JM, Matyjaszewski K, Gregory KB, Lowry GV, Tilton RD (2011) Microbial bioavailability of covalently bound polymer coatings on model engineered nanomaterials. Environ Sci Technol 45(12):5253–5259

    Article  Google Scholar 

  • Kumpiene J, Ore S, Renella G, Mench M, Lagerkvist A, Maurice C (2006) Assessment of zerovalent iron for stabilization of chromium, copper, and arsenic in soil. Environ Pollut 144:62–69

    Article  Google Scholar 

  • Laumann S, Micic V, Lowry GV, Hofmann T (2013) Carbonate minerals in porous media decrease mobility of polyacrylic acid modified zero-valent iron nanoparticles used for groundwater remediation. Environ Pollut 179:53–60

    Article  Google Scholar 

  • Li T, Farrell J (2000) Reductive dechlorination of trichloroethene and carbon tetrachloride using iron and palladized-iron cathodes. Environ Sci Technol 34(1):173–179

    Article  Google Scholar 

  • Li Y, Li J, Zhang Y (2012) Mechanism insights into enhanced Cr(VI) removal using nano scale zero valent iron supported on the pillared bentonite by macroscopic and spectroscopic studies. J Hazard Mater 227–228:211–218

    Google Scholar 

  • Lien HL, Zhang WX (2007) Nanoscale Pd/Fe bimetallic particles: catalytic effects of palladium on hydrodechlorination. Appl Catal B: Environ 77:110–116

    Article  Google Scholar 

  • Liu Y, Lowry GV (2006) Effect of particle age (Fe0 content) and solution pH on NZVI reactivity: H2 evolution and TCE dechlorination. Environ Sci Technol 40(19):6085–6090

    Article  Google Scholar 

  • Liu YQ, Choi H, Dionysiou D, Lowry GV (2005a) Trichloroethene hydrodechlorination in water by highly disordered monometallic nano iron. Chem Mater 17(21):5315–5322. doi:10.1021/Cm0511217

    Article  Google Scholar 

  • Liu YQ, Majetich SA, Tilton RD, Sholl DS, Lowry GV (2005b) TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environ Sci Technol 39(5):1338–1345

    Article  Google Scholar 

  • Liu H, Chen T, Zou X, Xie Q, Qing C, Chen D, Frost RL (2013) Removal of phosphorus using NZVI derived from reducing natural goethite. Chem Eng J 234:80–87

    Article  Google Scholar 

  • Liu X, Wang F, Chen Z, Megharaj M, Naidu R (2014) Heterogeneous Fenton oxidation of Direct Black G in dye effluent using functional kaolin-supported nanoscale zero iron. Environ Sci Pollut Res 21:1936–1943

    Article  Google Scholar 

  • Luo S, Qin P, Shao J, Peng L, Zeng Q, Gu JD (2013) Synthesis of reactive nano scale zero valent iron using rectorite supports and its application for Orange II removal. Chem Eng J 223:1–7

    Article  Google Scholar 

  • Machado S, Pinto SL, Grosso JP, Nouws HPA, Albergaria JT, Delerue-Matos C (2013) Green production of zero-valent iron nanoparticles using tree leaf extracts. Sci Total Environ 445–446:1–8

    Article  Google Scholar 

  • Namkung KC, Burgess AE, Bremner DH, Staines H (2008) Advanced Fenton processing of aqueous phenol solutions: a continuous system study including sonication effects. Ultrason Sonochem 15:171–176

    Article  Google Scholar 

  • Nurmi JT, Tratnyek PG, Sarathy V, Baer DR, Amonette JE, Pecher K, Wang CM, Linehan JC, Matson DW, Penn RL, Driessen MD (2005) Characterization and properties of metallic iron nanoparticles: spectroscopy, electrochemistry, and kinetics. Environ Sci Technol 39(5):1221–1230. doi:10.1021/Es049190u

  • O’Carroll D, Sleep B, Krol M, Boparai H, Kocur C (2013) Nanoscale zero valent iron and bimetallic particles for contaminated site remediation. Adv Water Resour 51:104–122

    Article  Google Scholar 

  • Official Gazette of RS, 67 (2011) and 48 (2012) Regulation on limit values of pollutants in water and deadlines for their achievement

    Google Scholar 

  • Park H, Park Y, Kim W, Choi W (2013) Surface modification of TiO2 photocatalyst for environmental applications. J Photochem Photobiol, C 15:1–20

    Article  Google Scholar 

  • Phenrat T, Marhaba T, Rachakornkij M (2007) XRD and unconfined compressive strength study for a qualitative examination of calcium–arsenic compounds retardation of cement hydration in solidified/stabilized arsenic–iron hydroxide sludge. J Environ Eng-ASCE 133:595–607

    Article  Google Scholar 

  • Phenrat T, Liu Y, Tilton RD, Lowry GV (2009) Adsorbed polyelectrolyte coatings decrease Fe0 nanoparticle reactivity with TCE in water: conceptual model and mechanisms. Environ Sci Technol 43(5):1507–1514

    Article  Google Scholar 

  • Quinn J, Geiger C, Clausen C, Brooks K, Coon C, O’Hara S, Krug T, Major D, Yoon WS, Gavaskar A, Holdsworth T (2005) Field demonstration of DNAPL dehalogenation using emulsified zero-valent iron. Environ Sci Technol 39(5):1309–1318

    Article  Google Scholar 

  • Raychoudhury T, Tufenkji N, Ghoshal S (2012) Aggregation and deposition kinetics of carboxymethyl cellulose-modified zero-valent iron nanoparticles in porous media. Water Res 46(6):1735–1744

    Article  Google Scholar 

  • Ruiz-Hitzky E, Darder M, Fernandes FM, Wicklein B, Alcântara ACS, Aranda P (2013) Fibrous clays based bionanocomposites. Prog Polym Sci 38:1392–1414

    Article  Google Scholar 

  • Sánchez A, Recillas S, Font X, Casals E, González E, Puntes V (2011) Ecotoxicity of, and remediation with, engineered inorganic nanoparticles in the environment. Trends Anal Chem 30(3):507–516

    Article  Google Scholar 

  • Shukla SK, Mishra AK, Arotiba OA, Mamba BB (2013) Chitosan-based nano-materials: a state-of-the-art review. Int J Biol Macromol 59:46–58

    Article  Google Scholar 

  • Singh S, Mahalingam H, Singh PK (2013) Polymer-supported titanium dioxide photo catalysts for environmental remediation: a review. Appl Catal A: Gen 462–463:178–195

    Article  Google Scholar 

  • Sun YP, Li XQ, Cao J, Zhang WX, Wang HP (2006) Characterization of zero valent iron nanoparticles. Adv Colloid Interface Sci 120(1–3):4–56

    Google Scholar 

  • Sun SP, Li CJ, Sun JH, Shi SH, Fan MH, Zhou Q (2009) Decolorization of an azo dye Orange G in aqueous solution by Fenton oxidation process: effect of system parameters and kinetic study. J Hazard Mater 161:1052–1057

    Article  Google Scholar 

  • Tang SCN, Lo IMC (2013) Magnetic nanoparticles: essential factors for sustainable environmental applications. Water Res 47:2613–2632

    Article  Google Scholar 

  • Tiraferri A, Chen KL, Sethi R, Elimelech M (2008) Reduced aggregation and sedimentation of zero-valent iron nanoparticles in the presence of guar gum. J Colloid Interface Sci 324(1–2):71–79

    Article  Google Scholar 

  • Tomašević DD, Kozma G, DV Kerkez, Dalmacija BD, Dalmacija MB, Bečelić-Tomin MR, Kukovecz A, Konya Z, Rončević S (2014a) Toxic metal immobilization in contaminated sediment using bentonite- and kaolinite-supported nano zero-valent iron. J Nanopart Res 16:2548

    Article  Google Scholar 

  • Tomašević D, Dalmacija M†, Kerkez D, Bečelić-Tomin M, Dalmacija B, Rončević S, Maletić S (2014b) In situ remediation of toxic metal contaminated sediment using kaolinite supported nZVI. Paper presented at the 4th meeting of new remediation technologies “Remediation 2014”, 12–14 May, Zrenjanin, Serbia

    Google Scholar 

  • Tosco T, Coisson M, Xue D, Sethi R (2012) Zero valent iron nanoparticles for groundwater remediation: surface and magnetic properties, colloidal stability, and perspectives for field application. In: Chiolerio A, Allia P (eds) Nanoparticles featuring electromagnetic properties: from science to engineering. Res Signpost, Kerala, pp 201–223

    Google Scholar 

  • Tosco T, Papini MP, Viggi CC, Sethi R (2013) Nanoscale zero valent iron particles for groundwater remediation: a review. J Clean Prod 77:10–21

    Article  Google Scholar 

  • Udom I, Ram MK, Stefanakos EK, Hepp AF, Goswami DY (2013) One dimensional-ZnO nanostructures: synthesis, properties and environmental applications. Mater Sci Semicond Process 16:2070–2083

    Article  Google Scholar 

  • Wang CB, Zhang WX (1997) Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ Sci Technol 31(7):2154–2156

    Article  Google Scholar 

  • Wang Q, Qian H, Yang Y, Zhang Z, Naman C, Xu X (2010a) Reduction of hexavalent chromium by carboxymethyl cellulose-stabilized zero-valent iron nanoparticles. J Contam Hydrol 114(1–4):35–42

    Article  Google Scholar 

  • Wang W, Zhou M, Mao Q, Yue J, Wang X (2010b) Novel NaY zeolite-supported nanoscale zero-valent iron as an efficient heterogeneous Fenton catalyst. Catal Commun 11:937–941

    Article  Google Scholar 

  • Wang S, Sun H, Ang HM, Tadé MO (2013) Adsorptive remediation of environmental pollutants using novel graphene-based nanomaterials. Chem Eng J 226:336–347

    Article  Google Scholar 

  • Wu D, Shen Y, Ding A, Mahmood Q, Liu S, Tu Q (2013) Effects of nanoscale zero-valent iron particles on biological nitrogen and phosphorus removal and microorganisms in activated sludge. J Hazard Mater 262:649–655

    Article  Google Scholar 

  • Xu P, Zeng GM, Huang DL, Feng CL, Hu S, Zhao MH, Lai C, Wei Z, Huang C, Xie GX, Liu ZF (2012) Use of iron oxide nanomaterials in wastewater treatment: a review. Sci Total Environ 424:1–10

    Article  Google Scholar 

  • Yan W, Lien HL, Koel BE, Zhang WX (2013) Iron nanoparticles for environmental clean-up: recent developments and future outlook. Environ Sci: Process Impacts 15(1):63–77. doi:10.1039/c2em30691c

    Google Scholar 

  • Yu R, Chen H, Cheng W, Lin Y, Huang C (2014) Monitoring of ORP, pH and DO in heterogeneous Fenton oxidation using nZVI as a catalyst for the treatment of azo-dye textile wastewater. J Taiwan Inst Chem Eng 45(3):947–954

    Article  Google Scholar 

  • Zhang Y, Li Y, Li J, Sheng G, Zhang Y, Zheng X (2012) Enhanced Cr(VI) removal by using the mixture of pillared bentonite and zero-valent iron. Chem Eng J 185–186:243–249

    Article  Google Scholar 

  • Zhang M, Bacik DB, Roberts CB, Zhao D (2013) Catalytic hydro dechlorination of trichloroethylene in water with supported CMC-stabilized palladium nanoparticles. Water Res 47:3706–3715

    Article  Google Scholar 

  • Zhao X, Lv L, Pan B, Zhang W, Zhang S, Zhang Q (2011) Polymer-supported nanocomposites for environmental application: a review. Chem Eng J 170:381–394

    Article  Google Scholar 

  • Zhou L, Thanh TL, Gong J, Kim JH, Kim EJ, Chang YS (2014) Carboxymethyl cellulose coating decreases toxicity and oxidizing capacity of nanoscale zero valent iron. Chemosphere 104:155–161

    Article  Google Scholar 

Download references

Acknowledgements

This work has been produced with the financial assistance of the EU (Project MATCROSS, HUSRB 1002/214/188) and the Ministry of Education, Science and Technological Development of the Republic of Serbia (Projects Number III43005 and TR37004). The financial support of the TÁMOP-4.2.2.A-11/1/KONV-2012-0047, TÁMOP-4.2.2.A-11/1/KONV-2012-0060 and OTKA NN 110676 projects is acknowledged. The contents of this document are the sole responsibility of the University of Novi Sad, Faculty of Sciences, and can under no circumstances be regarded as reflecting the position of the European Union and/or the Managing Authority.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dragana Tomašević Pilipović .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Tomašević Pilipović, D., Kerkez, Đ., Dalmacija, B., Bečelić-Tomin, M., Došić, A. (2017). Potential Application of Nano Zero Valent Iron in Environmental Protection. In: Pellicer, E., et al. Advances in Applications of Industrial Biomaterials. Springer, Cham. https://doi.org/10.1007/978-3-319-62767-0_10

Download citation

Publish with us

Policies and ethics