Skip to main content

Determination of Fracture Parameters

  • Chapter
  • First Online:
Plasticity and Fracture

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 244))

  • 1869 Accesses

Abstract

Numerical methods for determining fracture mechanics parameters or “crack-driving forces” like J-integral or energy release rate and stress intensity factors by finite element analyses are presented and explained. Special emphasis is placed on the capabilities of the finite element code ABAQUS. Path dependence of the J-integral in incremental plasticity is addressed and rules for calculating physically meaningful J values are given. Likewise, experimental procedures for determining the fracture toughness in terms of J or K as codified in the ASTM standards are described, starting with a discussion on fracture mechanics terminology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abaqus (2014) User’s manual, version 6.12. Dassault Systèmes Simulia Corp, Providence, RI, USA

    Google Scholar 

  2. ASTM E399 (2012) Standard test method for linear-elastic plane-strain fracture toughness KIc of metallic materials. Annual book of ASTM standards, vol 03.01. American Society for Testing and Materials, West Conshohocken (PA), USA

    Google Scholar 

  3. ASTM E561 (2015) Standard test method for K–R curve determination. Annual book of ASTM standards, vol 03.01. American Society for Testing and Materials, West Conshohocken (PA), USA

    Google Scholar 

  4. ASTM E1820 (2015) Standard test method for measurement of fracture toughness. Annual book of ASTM standards, vol 03.01. American Society for Testing and Materials, West Conshohocken (PA), USA

    Google Scholar 

  5. ASTM E1823 (2013) Standard terminology relating to fatigue and fracture testing. Annual book of ASTM standards, vol 03.01. American Society for Testing and Materials, West Conshohocken (PA), USA

    Google Scholar 

  6. ASTM E2472 (2012) Standard test method for determination of resistance to stable crack extension under low-constraint conditions, Annual book of ASTM Standards, vol 03.01. American Society for Testing and Materials, West Conshohocken (PA), USA

    Google Scholar 

  7. Atluri SN, Nishioka T, Nakagaki M (1984) Incremental path-independent integrals in inelastic and dynamic fracture mechanics. Eng Fract Mech 20:209–244

    Article  Google Scholar 

  8. Barsoum RS (1977) Triangular quarterpoint elements as elastic and perfectly-plastic crack tip elements. Int J Num Meth Eng 11:85–98

    Article  MATH  Google Scholar 

  9. Brocks W (2010) Computational fracture mechanics. In: Blockley R, Shyy W (eds) Encyclopedia of aerospace engineering, vol 3. John Wiley & Sons

    Google Scholar 

  10. Brocks W, Cornec A, Scheider I (2003) Computational aspects of nonlinear fracture mechanics. In: Milne I, Ritchie RO, Karihaloo B (eds) Comprehensive structural integrity—Numerical and computational methods, vol. 3. Elsevier, pp 127–209

    Google Scholar 

  11. Brocks W, Eberle A, Fricke W, Veith H (1994) Large stable crack growth in fracture mechanics specimens. Nucl Eng Design 151:387–400

    Article  Google Scholar 

  12. Brocks W, Müller W, Olschewski J (1985) Experiences in applying ADINA to the analysis of crack tip fields in elastic-plastic fracture mechanics. Comput Struct 21:137–158

    Article  Google Scholar 

  13. Brocks W, Rabbolini S (2015) Computational fracture mechanics. Report students project, Dipartimento di Meccanica, Politecnico di Milano

    Google Scholar 

  14. Brocks W, Scheider I (2003) Reliable J-values—Numerical aspects of the path-dependence of the J-integral in incremental plasticity. Materialpruefung 45:264–275

    Google Scholar 

  15. Brocks W, Yuan H (1989) Numerical investigations on the significance of J for large stable crack growth. Eng Fract Mech 32:459–468

    Article  Google Scholar 

  16. Brust FW, Nishioka T, Atluri SN (1985) Further studies on elastic-plastic stable fracture utilizing the T*-integral. Eng Fract Mech 22:1079–1103

    Article  Google Scholar 

  17. DeLorenzi HG (1982) Energy release rate calculations by the finite element method. General Electric Technical Information Series, Report No. 82CRD205

    Google Scholar 

  18. DeLorenzi HG (1982) On the energy release rate and the J-integral for 3D crack configurations. J Fracture 19:183–193

    Article  Google Scholar 

  19. Gosz M, Dolbow J, Moran G (1998) Domain integral formulation for stress intensity factor computation along curved three-dimensional interface cracks. Int J Solids Stuctures 35:1763–1783

    Article  MATH  Google Scholar 

  20. Griffith AA (1920) The phenomena of rupture and flow in solids. Phil Trans Roy Soc London A211:163–198

    Google Scholar 

  21. Gullerud AS, Dodds RH, Hampton RW, Dawicke DS (1999) Three-dimensional modeling of ductile crack growth in thin sheet metals, computational aspects and validation. Eng Fract Mech 63:347–374

    Article  Google Scholar 

  22. Kuna M (2013) Finite elements in fracture mechanics. Springer, Dordrecht

    Book  MATH  Google Scholar 

  23. Li FZ, Shih CF, Needleman A (1985) A comparison of methods for calculating energy release rates. Eng Fract Mech 21:405–421

    Article  Google Scholar 

  24. Maugin GA (1995) Material forces: concepts and applications. Appl Mech Rev 48:213–245

    Article  Google Scholar 

  25. McMeeking RM, Rice JR (1975) Finite-element formulations for problems of large elastic-plastic formulations. Int J Solids Struct 11:601–616

    Article  MATH  Google Scholar 

  26. Newman JC, James MA, Zerbst U (2003) A review of the CTOA/CTOD fracture criterion. Eng Fract Mech 70:371–385

    Article  Google Scholar 

  27. Parks DM (1974) A stiffness derivative finite element technique for determination of crack tip stress intensity factors. Int J Fract 10:487–502

    Article  Google Scholar 

  28. Parks DM (1977) The virtual crack extension method for nonlinear material behaviour. Comp Meth Appl Mech Eng 12:353–364

    Article  MATH  Google Scholar 

  29. Rice JR (1965) An examination of the fracture mechanics energy balance from the point of view of continuum mechanics. In: Yokobori T, Kawasaki T, Swedlow JK (eds) Proceedings of 1st international of conference fracture, Sendai, Japan, pp 309–340

    Google Scholar 

  30. Rice JR (1979) The mechanics of quasi-static crack growth. In: Kelly RE (ed) Proceedings of 8th international congress for applied mechanics, pp 191–216

    Google Scholar 

  31. Rice JR, Drugan WJ, Sham TL (1980) Elastic-plastic analysis of growing cracks. In: Paris PC (ed) Fracture Mechanics, ASTM STP 700. American Society for Testing and Materials

    Google Scholar 

  32. Rice JR, Paris PC, Merkle JG (1973) Some further results of J-integral analysis and estimates. In: Kaufman J, Swedlow J, Corten H, Srawley J, Heyer R, Wessel E, Irwin G (eds) Progress in Sih GE (1974) Strain energy density factor applied to mixed mode crack problems. Int J Fracture 10:305–321

    Google Scholar 

  33. Richard HA, Fulland M, Sander M (2005) Theoretical crack path predictions. Fatigue Fract Eng Mater Struct 28:3–12

    Article  Google Scholar 

  34. Scheider I, Schödel M, Brocks W, Schönfeld W (2006) Crack propagation analyses with CTOA and cohesive model: Comparison and experimental validation. Eng Fract Mech 73:252–263

    Article  Google Scholar 

  35. Schwalbe KH, Landes JD, Heerens J (2007) Classical fracture mechanics methods. In: Milne I, Ritchie RO, Karihaloo B (eds) Comprehensive structural integrity–Fracture of materials from nano to macro, vol 11. Elsevier, pp 9–42

    Google Scholar 

  36. Schwalbe KH, Newman JC, Shannon J (2005) Fracture mechanics testing on specimens with low constraint—standardisation activities within ISO and ASTM. Eng Fract Mech 72:557–576

    Article  Google Scholar 

  37. Shih CF, Asaro RJ (1988) Elastic-plastic analysis of cracks on bimaterial interfaces: part I – small scale yielding. J Appl Mech 55:299–316

    Article  Google Scholar 

  38. Shih CF, Moran B, Nakamura T (1986) Energy release rate along a three-dimensional crack front in a thermally stressed body. Int J Fracture 30:79–102

    Google Scholar 

  39. Siegele D, Schmitt W (1983) Determination and simulation of stable crack growth in ADINA. Comput Struct 17:697–703

    Article  Google Scholar 

  40. Yuan H, Brocks W (1991) On the J-integral concept for elastic-plastic crack extension. Nucl Eng Design 131:157–173

    Article  Google Scholar 

  41. Zerbst U, Schödel M, Beier HT (2011) Parameters affecting the damage tolerance behaviour of railway axles. Eng Fract Mech 78:793–809

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Brocks .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Brocks, W. (2018). Determination of Fracture Parameters. In: Plasticity and Fracture. Solid Mechanics and Its Applications, vol 244. Springer, Cham. https://doi.org/10.1007/978-3-319-62752-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62752-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62751-9

  • Online ISBN: 978-3-319-62752-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics