Skip to main content

Basic Characteristics of Antipollution Devices and PPE

  • Chapter
  • First Online:
Clinical Handbook of Air Pollution-Related Diseases

Abstract

In this chapter, we will talk about antipollution devices and all the aspects around them. We will explain why they exist, first of all. Pollution is a wide matter and we will describe the main pollutants in terms of size, main origin, and possible targets. We will explain which benefits these devices can provide for human health and which goal they can achieve in a sanitary system. Then we will describe which features these devices have. Each type of product has its specific features, and each product is different from another one. We will describe the common characteristics of these products just for being antipollution. We will explain how differently producers and buyers look at them. Our effort exists for users (affected by disease or risking it), so, after this description, we will provide guidelines to help consumers in their choices. We will show classifications and standards about respiratory protective devices. In this context, we will describe standards in work places and how filters and surgical masks are classified for both products and packaging. We will focus on masks. They are important for domestic use, but they lack standards, if we compare them to other devices. We will describe their characteristics and features so we will provide guidelines for consumers. In the end, we will talk about some thoughts and doubts regarding the market of antipollution devices. In this section, we will show how the trade between sellers and buyers works and what lacks it has. We will propose some advices in order to fix these lacks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Dockery DW, Pope CA, Xu X, Spengler JD, Ware JH, Fay ME, Ferris BG, Speizer FE Jr. An association between air pollution and mortality in six U.S. cities. N Engl J Med. 1993;329:1753–9.

    Article  CAS  PubMed  Google Scholar 

  2. Brook RD. Cardiovascular effects of air pollution. Clin Sci. 2008;115(6):175–87.

    Article  CAS  PubMed  Google Scholar 

  3. Committee on the Medical Effects of Air Pollutants (COMEAP). Final Report: Longterm exposure to air pollution: effect on mortality. 2009.

    Google Scholar 

  4. Martinelli N, Olivieri O, Girelli D. Air particulate matter and cardiovascular disease. A narrative review. Eur J Intern Med. 2013;24(4):295–302.

    Article  CAS  PubMed  Google Scholar 

  5. Franklin BA, Brook R, Pope CA III. Air pollution and cardiovascular disease. Curr Probl Cardiol. 2015;40:207–38.

    Article  PubMed  Google Scholar 

  6. Franchini M, Mannucci PM. Air pollution and cardiovascular disease. Thromb Res. 2012;129(3):230–4.

    Article  CAS  PubMed  Google Scholar 

  7. Mills NL, Donaldson K, Hadoke PW, Boon NA, Mac Nee W, Cassee FR, Sandström T, Blomberg A, Newby DE. Adverse cardiovascular effects of air pollution. Nat Clin Pract Cardiovasc Med. 2009;6(1):36–44.

    Article  CAS  PubMed  Google Scholar 

  8. Franchini M, Mannucci PM. Particulate air pollution and cardiovascular risk: short-term and long-term effects. Semin Thromb Hemost. 2009;35(7):665–70.

    Article  CAS  PubMed  Google Scholar 

  9. Chen H, Goldberg MS, Villeneuve PJ. A systematic review of the relation between long-term exposure to ambient air pollution and chronic diseases. Rev Environ Health. 2008;23(4):243–97.

    CAS  PubMed  Google Scholar 

  10. Pope CA 3rd, Hansen JC, Kuprov R, Sanders MD, Anderson MN, Eatough DJ. Vascular function and short-term exposure to fine particulate air pollution, 1995. J Air Waste Manag Assoc. 2011;61(8):858–63.

    Article  CAS  PubMed  Google Scholar 

  11. Buteau S, Goldberg M. A structured review of panel studies used to investigate associations between ambient air pollution and heart rate variability. Environ Res. 2016;148:207–47.

    Article  CAS  PubMed  Google Scholar 

  12. World Health Organization (WHO). Ambient air pollution attributable deaths, by region, 2012, Global Health Observatory visualizations. 2012. http://apps.who.int/gho/data/node.wrapper.ENVHEALTH3?lang=en&menu=hide.

  13. World Health Organization (WHO). The top 10 causes of death. Fact sheet N°310. 2014. http://www.who.int/mediacentre/factsheets/fs310/en/.

  14. Dominici F, Peng RD, Bell ML, Pham L, McDermott A, Zeger SL, Samet JM. Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases. JAMA. 2006;295:1127–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Langrish JP, Mills NL, Chan JKK, Leseman DLAC, Aitken RJ, Fokkens PHB, Cassee FR, Li J, Donaldson K, Newby DE, Jiang L. Beneficial cardiovascular effects of reducing exposure to particulate air pollution with a simple facemask. Part Fibre Toxicol. 2009;6:8.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Janssen NAH, Fischer P, Marra M, Ameling C, Cassee FR. Short-term effects of PM2.5, PM10 and PM2.5–10 on daily mortality in the Netherlands. Sci Total Environ. 2013;463-464:20–6.

    Article  CAS  PubMed  Google Scholar 

  17. Nelin TD, Joseph AM, Gorr MW, Wold LE. Direct and indirect effects of particulate matter on the cardiovascular system. Toxicology. 2012;208(3):293–9.

    CAS  Google Scholar 

  18. Vanderlei LC, Pastre CM, Hoshi RA, Carvalho TD, Godoy MF. Basic notions of heart rate variability and its clinical applicability. Rev Bras Cir Cardiovasc. 2009;24(2):205–17.

    Article  PubMed  Google Scholar 

  19. Brook RD, Rajagopalan S, Pope CA III, Brook JR, Bhatnagar A, Diez-Roux AV, et al. Particulate matter air pollution and cardiovascular disease. An update to the scientific statement from the American Heart Association. Circulation. 2010;121(21):2331–78.

    Article  CAS  PubMed  Google Scholar 

  20. Bhaskaran K, Hajat S, Haines A, Herrett E, Wilkinson P, Smeeth L. Effects of air pollution on the incidence of myocardial infarction. Heart. 2009;95(21):1746–59.

    Article  CAS  PubMed  Google Scholar 

  21. Mustafić H, Jabre P, Caussin C, Murad MH, Escolano S, Tafflet M, Périer MC, Marijon E, Vernerey D, Empana J, Jouven X. Main air pollutants and myocardial infarction: a systematic review and meta-analysis. JAMA. 2012;307(7):713–21. http://jama.jamanetwork.com/article.aspx?articleid=1104975

    Article  PubMed  Google Scholar 

  22. Shah ASV, Lee KK, DA MA, Hunter A, Nair H, Langrish JP, Newby DE, Whiteley W, Mills NL. Short term exposure to air pollution and stroke: systematic review and meta-analysis. BMJ. 2015;350:h1295.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Maheswaran R. Air pollution and stroke—an overview of the evidence base. Spat Spatiotemporal Epidemiol. 2016;18:74–81.

    Article  PubMed  Google Scholar 

  24. Medina-Ramon M, Zanobetti A, Schwartz J. The effect of ozone and PM10 on hospital admissions for pneumonia and chronic obstructive pulmonary disease: a national multicity study. Am J Epidemiol. 2006;163:579–88.

    Article  PubMed  Google Scholar 

  25. World Health Organization (WHO). Air quality guidelines-global. Update 2005. 2006.

    Google Scholar 

  26. Chen C, Zhao B, Weschler CJ. Assessing the influence of indoor exposure to “outdoor ozone” on the relationship between ozone and short-term mortality in U.S. communities. Environ Health Perspect. 2012;120:367–72.

    Article  Google Scholar 

  27. Bell ML, Dominici F. Effect modification by community characteristics on the short-term effects of ozone exposure and mortality in 98 US communities. Am J Epidemiol. 2008;167:986–97.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Bell ML, Dominici F, Samet JM. A meta-analysis of time-series studies of ozone and mortality with comparison to the national morbidity, mortality, and air pollution study. Epidemiology. 2005;16:436–45.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ito K, De Leon SF, Lippmann M. Associations between ozone and daily mortality: analysis and meta-analysis. Epidemiology. 2005;16:446–57.

    Article  PubMed  Google Scholar 

  30. Bell ML, Peng RD, Dominici F. The exposure–response curve for ozone and risk of mortality and the adequacy of current ozone regulations. Environ Health Perspect. 2006;114:532–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mills NL, Törnqvist H, Gonzalez MC, Vink E, Robinson SD, Söderberg S, Boon NA, Donaldson K, Sandström T, Blomberg A, Newby DE. Ischemic and thrombotic effects of dilute diesel-exhaust inhalation in men with coronary heart disease. N Engl J Med. 2007;357:1075–82.

    Article  CAS  PubMed  Google Scholar 

  32. Giles LV, Barn P, Künzli N, Romieu I, Mittleman MA, van Eeden S, Allen R, Carlsten C, Stieb D, Noonan C, Smargiassi A, Kaufman JD, Hajat S, Kosatsky T, Brauer M. A temporal, multicity model to estimate the effects of short-term exposure to ambient air pollution on health. Environ Health Perspect. 2008;116:1147–53.

    Article  Google Scholar 

  33. Ware JH, Ferris BG Jr, Dockery DW, Spengler JD, Stram DO, Speizer FE. Effects of ambient sulfur oxides and suspended particles on respiratory health of preadolescent children. Am Rev Respir Dis. 1986;133(5):834–42.

    CAS  PubMed  Google Scholar 

  34. Fiorina A, Bonifazi F. Aerobiologia ed Allergeni Stagionali. ECIG. 2006.

    Google Scholar 

  35. Budde M, Busse M, Beigl M. Investigating the use of commodity dust sensors for the embedded measurement of particulate matter, networked sensing systems (INSS). 2012 Ninth International Conference on IEEE; 2012. p. 1–4.

    Google Scholar 

  36. Flagan R. Probing the chemical dynamics of aerosols. In: Newman L, editor. Measurement challenges in atmospheric chemistry. Washington, DC: American Chemical Society; 1993.

    Google Scholar 

  37. OSHA. OSHA bulletin: general respiratory protection guidance for employers and workers. 2011.

    Google Scholar 

  38. EN 14683:2014. Medical face masks—Requirements and test methods.

    Google Scholar 

  39. EN 13274-7:2008. Respiratory protective devices. Methods of test. Determination of particle filter penetration.

    Google Scholar 

  40. Department of Health, Health protection agency: Guidance for pandemic influenza: infection control in hospitals and primary care settings. 2005.

    Google Scholar 

  41. HSE-Health and Safety Executive (UK), HSG53 “Respiratory protective equipment at work, A practical guide”. 2013.

    Google Scholar 

  42. EN 149:2001+2009, chapter 9 Marking and Packaging.

    Google Scholar 

  43. C89/686/CEE: Council Directive of 21 December 1989 on the approximation of the laws of the Member States relating to personal protective equipment.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Bandini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Bandini, C., Sabatini, I., Dimilta, M., Baldessari, G. (2018). Basic Characteristics of Antipollution Devices and PPE. In: Capello, F., Gaddi, A. (eds) Clinical Handbook of Air Pollution-Related Diseases. Springer, Cham. https://doi.org/10.1007/978-3-319-62731-1_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62731-1_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62730-4

  • Online ISBN: 978-3-319-62731-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics