Skip to main content

Health Consequences Due to Prenatal Endocrine-Disrupting Chemical Exposure

  • Chapter
  • First Online:
Clinical Handbook of Air Pollution-Related Diseases

Abstract

Please check the hierarchy of the section headings and confirm if correct.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Schug TT, Janesick A, Blumberg B, Heindel JJ. Endocrine disrupting chemicals and disease susceptibility. J Steroid Biochem Mol Biol. 2011;127(3-5):204–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Polyzos SA, Kountouras J, Deretzi G, Zavos C, Mantzoros CS. The emerging role of endocrine disruptors in pathogenesis of insulin resistance: a concept implicating nonalcoholic fatty liver disease. Curr Mol Med. 2012;12:68–82.

    Article  CAS  PubMed  Google Scholar 

  3. Sharpe RM, Drake AJ. Bisphenol A and metabolic syndrome. Endocrinology. 2010;151:2404–7.

    Article  CAS  PubMed  Google Scholar 

  4. Diamanti-Kandarakis E, Bourguignon JP, Giudice LC, Hauser R, Prins GS, Soto AM, et al. Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocr Rev. 2009;30(4):293–342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Baillie-Hamilton PF. Chemical toxins: a hypothesis to explain the global obesity epidemic. J Altern Complement Med. 2002;8:185–92.

    Article  PubMed  Google Scholar 

  6. Wardle J, Cooke L. The impact of obesity on psychological well-being. Best Pract Res Clin Endocrinol Metab. 2005;19:421–40.

    Article  PubMed  Google Scholar 

  7. Newbold RR, Jefferson WN, Padilla-Banks E. Long-term adverse effects of neonatal exposure to bisphenol A on the murine female reproductive tract. Reprod Toxicol. 2007a;24:253–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Newbold RR, Padilla-Banks E, Snyder RJ, Phillips TM, Jefferson WN. Developmental exposure to endocrine disruptors and the obesity epidemic. Reprod Toxicol. 2007b;23:290–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Thayer KA, Heindel JJ, Bucher JR, Gallo MA. Role of environmental chemicals in diabetes and obesity: a National Toxicology Program workshop review. Environ Health Perspect. 2012;120:779–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Irigaray P, et al. Benzo[a]pyrene impairs β-adrenergic stimulation of adipose tissue lipolysis and causes weight gain in mice. A novel molecular mechanism of toxicity for a common food pollutant. FEBS J. 2006;273:1362–72.

    Article  CAS  PubMed  Google Scholar 

  11. Jerrett M, et al. Traffic-related air pollution and obesity formation in children: a longitudinal, multilevel analysis. Environ Health. 2014;13:49.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. McConnell R, et al. Does near-roadway air pollution contribute to childhood obesity? Pediatr Obes. 2015;11:1–3. https://doi.org/10.1111/ijpo.12016.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zheng Z, et al. Exposure to ambient particulate matter induces a NASH-like phenotype and impairs hepatic glucose metabolism in an animal model. J Hepatol. 2013;58:148–54.

    Article  CAS  PubMed  Google Scholar 

  14. Vandenberg LN, Maffini MV, Wadia PR, Sonnenschein C, Rubin BS, Soto AM. Exposure to environmentally relevant doses of the xenoestrogen bisphenol-A alters development of the fetal mouse mammary gland. Endocrinology. 2007;148:116–27.

    Article  CAS  PubMed  Google Scholar 

  15. Chamorro-Garcia R, Sahu M, Abbey RJ, Laude J, Pham N, Blumberg B. Transgenerational inheritance of increased fat depot size, stem cell reprogramming, and hepatic steatosis elicited by prenatal exposure to the obesogen tributyltin in mice. Environ Health Perspect. 2013;121:359–66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Masuno H, Iwanami J, Kidani T, Sakayama K, Honda K. Bisphenol A accelerates terminal differentiation of 3T3-L1 cells into adipocytes through the phosphatidylinositol 3-kinase pathway. Toxicol Sci. 2005;84:319–27.

    Article  CAS  PubMed  Google Scholar 

  17. Mackay H, Patterson ZR, Khazall R, Patel S, Tsirlin D, Abizaid A. Organizational effects of perinatal exposure to bisphenol-A and diethylstilbestrol on arcuate nucleus circuitry controlling food intake and energy expenditure in male and female CD-1 mice. Endocrinology. 2013;154:1465–75.

    Article  CAS  PubMed  Google Scholar 

  18. Chao HR, Wang SL, Lee WJ, Wang YF, Papke O. Levels of polybrominated diphenyl ethers (PBDEs) in breast milk from central Taiwan and their relation to infant birth outcome and maternal menstruation effects. Environ Int. 2007;33:239–45.

    Article  CAS  PubMed  Google Scholar 

  19. Herbstman JB, Sjodin A, Apelberg BJ, Witter FR, Halden RU, Patterson DG, et al. Birth delivery mode modifies the associations between prenatal polychlorinated biphenyl (PCB) and polybrominated diphenyl ether (PBDE) and neonatal thyroid hormone levels. Environ Health Perspect. 2008;116:1376–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Legler J, Hamers T, van Eck van der Sluijs-van de Bor M, Schoeters G, van der Ven L, Eggesbo M et al. The OBELIX project: early life exposure to endocrine disruptors and obesity. Am J Clin Nutr. 2011;94:1933S–8S.

    Google Scholar 

  21. Patisaul HB, Roberts SC, Mabrey KA, McCaffrey KA, Gear RB, Braun J, et al. Accumulation and endocrine disrupting effects of the flame retardant mixture Firemaster® 550 in rats: an exploratory assessment. J Biochem Mol Toxicol. 2013;27:124–36.

    Article  CAS  PubMed  Google Scholar 

  22. Belcher SM, Cookman CJ, Patisaul HB, Stapleton HM. In vitro assessment of human nuclear hormone receptor activity and cytotoxicity of the flame retardant mixture FM 550 and its triarylphosphate and brominated components. Toxicol Lett. 2014;228:93–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pillai HK, Fang F, Beglov D, Kozakov D, Vajda S, Stapleton HM, et al. Ligand binding and activation of PPARγ by Firemaster® 550: effects on adipogenesis and osteogenesis in vitro. Environ Health Perspect. 2014;122:1225–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Bourez S, Van den D, Aelen C, Le Lay S, Poupaert J, Larondelle Y, Thome JP, et al. The dynamics of accumulation of PCBs in cultured adipocytes vary with the cell lipid content and the lipophilicity of the congener. Toxicol Lett. 2013;216:40–6.

    Article  CAS  PubMed  Google Scholar 

  25. Elobeid MA, Brock DW, AllisonDB PMA, Ruden DM. Endocrine disruptors and obesity: an examination of selected persistent organic pollutants in the NHANES 1999–2002 data. Int J Environ Res Public Health. 2010;7:2988–3005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hao C, Cheng X, Xia H, Ma X. The endocrine disruptor mono-(2-ethylhexyl) phthalate promotes adipocyte differentiation and induces obesity in mice. Biosci Rep. 2012;32:619–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hines EP, White SS, Stanko JP, Gibbs-Flournov EA, Lau C, Fenton SE. Phenotypic dichotomy following developmental exposure to perfluorooctanoic acid (PFOA) in female CD-1 mice: low doses induce elevated serum leptin and insulin, and overweight in mid-life. Mol Cell Endocrinol. 2009;304:97–105.

    Article  CAS  PubMed  Google Scholar 

  28. Asher MI, Montefort S, Bjorksten B, Lai CKW, Strachan DP, Weiland SK, et al. Worldwide time trends in the prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and eczema in childhood: ISAAC phases one and three repeat multicountry cross-sectional surveys. Lancet. 2006;368(9537):733–43.

    Article  PubMed  Google Scholar 

  29. WHO (World Health Organization). Asthma. Fact Sheet No. 307. 2006. Available http://www.who.int/mediacentre/factsheets/fs307/en/. Accessed 22 Oct 2006.

  30. Brauer M, Hoek G, Smit HA, de Jongste JC, Gerritsen J, Postma DS, Kerkhof M, Brunekreef B. Air pollution and development of asthma, allergy and infections in a birth cohort. Eur Respir J. 2007;29(5):879–88.

    Article  CAS  PubMed  Google Scholar 

  31. Gauderman WJ, Avol E, Lurmann F, Kuenzli N, Gilliland F, Peters J, McConnell R. Childhood asthma and exposure to traffic and nitrogen dioxide. Epidemiology. 2005;16(6):737–43.

    Article  PubMed  Google Scholar 

  32. Haberg SE, Stigum H, Nystad W, Nafstad P. Effects of pre- and postnatal exposure to parental smoking on early childhood respiratory health. Am J Epidemiol. 2007;166(6):679–86.

    Article  PubMed  Google Scholar 

  33. McConnell R, Berhane K, Yao L, Jerrett M, Lurmann F, Gilliland F, et al. Traffic, susceptibility, and childhood asthma. Environ Health Perspect. 2006;114:766–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zmirou D, Gauvin S, Pin I, Momas I, Sahraoui F, Just J, et al. Traffic related air pollution and incidence of childhood asthma: results of the Vesta case-control study. J Epidemiol Community Health. 2004;58(1):18–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dodson RE, Levy JI, Spengler JD, Shine JP, Bennett DH. Influence of basements, garages, and common hallways on indoor residential volatile organic compound concentrations. Atmos Environ. 2008;42(7):1569–81.

    Article  CAS  Google Scholar 

  36. Lorber M. Exposure of Americans to polybrominated diphenyl ethers. J Expo Sci Environ Epidemiol. 2008;18(1):2–19.

    Article  CAS  PubMed  Google Scholar 

  37. Rudel RA, Seryak LM, Brody JG. PCB-containing wood floor finish is a likely source of elevated PCBs in residents’ blood, household air and dust: a case study of exposure. Environ Health. 2008;7:2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Zota AR, Rudel RA, Morello-Frosch RA, Brody JG. Elevated house dust and serum concentrations of PBDEs in California: unintended consequences of furniture flammability standards? Environ Sci Technol. 2008;42(21):8158–64.

    Article  CAS  PubMed  Google Scholar 

  39. Bornehag CG, Sundell J, Weschler CJ, Sigsgaard T, Lundgren B, Hasselgren M, et al. The association between asthma and allergic symptoms in children and phthalates in house dust: a nested case–control study. Environ Health Perspect. 2004;112:1393–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Blunt E. Diethylstilbesrol exposure: it’s still an issue. Holist Nurs Pract. 2004;18(4):187–91.

    Article  PubMed  Google Scholar 

  41. Schrager S, Potter BE. Diethylstilbestrol exposure. Am Fam Physician. 2004;69(10):2395–400.

    PubMed  Google Scholar 

  42. Skakkebaek NE, Rajpert-De Meyts E, Main KM. Testicular dysgenesis syndrome: an increasingly common developmental disorder with environmental aspects. Hum Reprod. 2001;16:972–8.

    Article  CAS  PubMed  Google Scholar 

  43. Dolk H, Vrijheid M, Scott JES, Addor MC, Botting B, Vigan C, et al. Toward the effective surveillance of hypospadais. Environ Health Perspect. 2004;112(3):398–402.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ledger WL, Bahathiq AOS. Historical background and functional anatomy. In: The fallopian tube in infertility and IVF practice. 1st ed. New York: Cambridge University Press; 2010. p. 1–7.

    Chapter  Google Scholar 

  45. Brouwers MM, van der Zanden LFM, de Gier RPE, Barten EJ, Zielhuis GA, Feitz WFJ, et al. Hypospadias: risk factor patterns and different phenotypes. BJU Int. 2009;105:254–62.

    Article  PubMed  Google Scholar 

  46. Kurahashi N, Murakumo M, Kakizaki H, Nonomura K, Koyanagi T, Kasai S, et al. The estimated prevalence of hypospadias in Hokkaido, Japan. J Epidemiol. 2004;14(3):73–7.

    Article  PubMed  Google Scholar 

  47. Yoo JH. Differential diagnosis of hypospadias. J Korean Soc Pediatr Endocrinol. 2006;11(1):15–21.

    Google Scholar 

  48. Boisen KA, Kaleva M, Main KM, Virtanen HE, Haevisto A-M, Schmidt IM, et al. Difference in prevalence of congenital cryptorchidism in infant between two Nordic countries. Lancet. 2004;363:1264–9.

    Article  CAS  PubMed  Google Scholar 

  49. Preiksa RT, Zilaitiene B, Matulevicius V, Skakkebaek NE, Petersen JH, Jørgensen N, et al. Higher than expected prevalence of congenital cryptorchidism in Lithuania: a study of 1204 boys at birth and 1 year follow-up. Hum Reprod. 2005;20:1928–32.

    Article  CAS  PubMed  Google Scholar 

  50. Damgaard IN, Skakkebaek NE, Toppari J, Virtanen HE, Shen H, Schramm KW, et al. Persistent pesticides in human breast milk and cryptorchidism. Environ Health Perspect. 2006;114:1133–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Thorup J, Cortes D, Petersen BL. The incidence of bilateral cryptorchidism is increased and the fertility potential is reduced in sons born to mothers who have smoked during pregnancy. J Urol. 2006;176:734–7.

    Article  CAS  PubMed  Google Scholar 

  52. Fratric I, Zivkovic D, Vukmirovic S. Human exposure to endocrine disrupting chemicals as a prenatal risk factor for cryptorchidism. Paediatr Croat. 2015;59:19–24.

    Article  Google Scholar 

  53. Anway MD, Skinner MK. Epigenetic transgenerational actions of endocrine disruptors. Endocrinology. 2006;147:S43–9.

    Article  CAS  PubMed  Google Scholar 

  54. Mendiola J, Jorgensen N, Andersson A, Calafat A, Silva M, Redmon J, et al. Association between urinary metabolites of di(2-ethylhexyl) phtahalate and reproductive hormones in fertile men. Int J Androl. 2010;14:1–10.

    Google Scholar 

  55. Pan G, Hanoka T, Yoshimura M, Zhang S, Wang P, Tsukino H, et al. Decreased serum free testosterone in workers exposed to high levels of di-n-butyl phthalate (DBP) and di-2-ethylhexyl phthalate (DEHP): a cross sectional study in China. Environ Health Perspect. 2006;114(1):1643–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Corton JC, Lapinskas PJ. Peroxisome proliferator-activated receptors: mediators of phthalate ester-induced effects in the male reproductive tract? Toxicol Sci. 2005;83(1):4–17.

    Article  CAS  PubMed  Google Scholar 

  57. Rozati R, Reddy PP, Reddanna P, Mujtaba R. Role of environmental estrogens in the deterioration of male factor fertility. Fertil Steril. 2002;78(6):1187–94.

    Article  PubMed  Google Scholar 

  58. Tan LF, Sun XZ, Li YN, Ji JM, Wang QL, Chen LS, et al. Effects of carbaryl production exposure on the sperm and semen quality of occupational male workers. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi. 2005;23:87–90.

    CAS  PubMed  Google Scholar 

  59. Meeker JD, Ryan L, Barr DB, Herrick RF, Bennett DH, Bravo R, et al. The relationship of urinary metabolites of carbaryl/naphthalene and chlorpyrifos with human semen quality. Environ Health Perspect. 2004;112:1665–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Swan SH, Kruse RL, Liu F, Barr DB, Drobnis EZ, Redmon JB, et al. Semen quality in relation to biomarkers of pesticide exposure. Environ Health Perspect. 2003;111:1478–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Del-Mazo J, Brieno-Enriquez MA, Garcia-Lopez J, Lopez-Fernandez LA, De-Felici M. Endocrine disruptors, gene deregulation and male germ cell tumors. Int J Dev Biol. 2013;57(2-4):225–39.

    Article  CAS  PubMed  Google Scholar 

  62. Giannandrea F, Paoli D, Figa-Talamanca I, Lombardo F, Lenzi A, Gandini L. Effect of endogenous and exogenous hormones on testicular cancer: the epidemiological evidence. Int J Dev Biol. 2013;57(2-4):255–63.

    Article  CAS  PubMed  Google Scholar 

  63. Erickson RL. Persistent organochlorine pesticides and risk of testicular germ cell tumors. J Natl Cancer Inst. 2008;100(9):663–71.

    Article  PubMed  CAS  Google Scholar 

  64. LeCornet C, Fervers B, Oksbjerg Dalton S, Feychting M, Pukkala E, Tynes T, et al. Testicular germ cell tumours and parental occupational exposure to pesticides: a register-based case–control study in the Nordic countries (NORD-TEST study). Occup Environ Med. 2015;72(11):805–11.

    Article  Google Scholar 

  65. Paoli D, Giannandrea F, Gallo M, Turci R, Cattaruzza MS, Lombardo F, et al. Exposure to polychlorinated biphenyls and hexachlorobenzene, semen quality and testicular cancer risk. J Endocrinol Investig. 2015;38(7):745–52.

    Article  CAS  Google Scholar 

  66. Sweeney MF, Hasan N, Soto AM, Sonnenschein C. Environmental endocrine disruptors: effects on the human male reproductive system. Rev Endocr Metab Disord. 2016;16:341–57.

    Article  CAS  Google Scholar 

  67. Cowin PA, Foster PMD, Risbridger GP. Endocrine disruption in the male. In: Gore AC, editor. Endrocrine-disrupting chemicals: from basic research to clinical practice. Totowa: Humana; 2007. p. 33–62.

    Chapter  Google Scholar 

  68. Modugno F, Weissfeld JL, Trump DL, Zmuda JM, Shea P, Cauley JA, et al. Allelic variants of aromatase and the androgen and estrogen receptors: toward a multigenic model of prostate cancer risk. Clin Cancer Res. 2001;7:3092–6.

    CAS  PubMed  Google Scholar 

  69. Katzenwadel A, Wolf P. Androgen deprivation of prostate cancer: leading to a therapeutic dead end. Cancer Lett. 2015;367(1):12–7.

    Article  CAS  PubMed  Google Scholar 

  70. Alavanja MC, Samanic C, Dosemeci M, Lubin J, Tarone R, Lynch CF, et al. Use of agricultural pesticides and prostate cancer risk in the Agricultural Health Study cohort. Am J Epidemiol. 2003;157:800–14.

    Article  PubMed  Google Scholar 

  71. Mahajan R, Bonner MR, Hoppin JA, Alavanja MC. Phorate exposure and incidence of cancer in the agricultural health study. Environ Health Perspect. 2006;114:1205–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Song KH, Lee K, Choi HS. Endocrine disruptor bisphenol A induces orphan nuclear receptor Nur77 gene expression and steroidogenesis in mouse testicular Leydig cells. Endocrinology. 2002;143:2208–15.

    Article  CAS  PubMed  Google Scholar 

  73. Walsh DE, Dockery P, Doolan CM. Estrogenreceptor independent rapid non-genomic effects of environmental estrogens on [Ca2]i in human breast cancer cells. Mol Cell Endocrinol. 2005;230:23–30.

    Article  CAS  PubMed  Google Scholar 

  74. Charles LE, Loomis D, Shy CM, Newman B, Millikan R, Nylander-French LA, et al. Electromagnetic fields, polychlorinated biphenyls, and prostate cancer mortality in electric utility workers. Am J Epidemiol. 2003;157:683–91.

    Article  PubMed  Google Scholar 

  75. Prince MM, Ruder AM, Hein MJ, Waters MA, Whelan EA, Nilsen N, et al. Mortality and exposure response among 14,458 electrical capacitor manufacturing workers exposed to polychlorinated biphenyls (PCBs). Environ Health Perspect. 2006;114:1508–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ritchie JM, Vial SL, Fuortes LJ, Guo H, Reedy VE, Smith EM. Organochlorines and risk of prostate cancer. J Occup Environ Med. 2003;45:692–702.

    Article  CAS  PubMed  Google Scholar 

  77. Kester MH, Bulduk S, van Toor H, Tibboel D, Meinl W, Glatt H, et al. Potent inhibition of estrogen sulfotransferase by hydroxylated metabolites of polyhalogenated aromatic hydrocarbons reveals alternative mechanism for estrogenic activity of endocrine disrupters. J Clin Endocrinol Metab. 2002;87:1142–50.

    Article  CAS  PubMed  Google Scholar 

  78. Benbrahim-Tallaa L, Liu J, Webber MM, Waalkes MP. Estrogen signaling and disruption of androgen metabolism in acquired androgen-independence during cadmium carcinogenesis in human prostate epithelial cells. Prostate. 2007a;67:135–45.

    Article  CAS  PubMed  Google Scholar 

  79. Davey JC, Bodwell JE, Gosse JA, Hamilton JW. Arsenic as an endocrine disruptor: effects of arsenic on estrogen receptor-mediated gene expression in vivo and in cell culture. Toxicol Sci. 2007;98:75–86.

    Article  CAS  PubMed  Google Scholar 

  80. Benbrahim-Tallaa L, Webber MM, Waalkes MP. Mechanisms of acquired androgen independence during arsenic-induced malignant transformation of human prostate epithelial cells. Environ Health Perspect. 2007b;115:243–7.

    Article  CAS  PubMed  Google Scholar 

  81. Costa EM, Spritzer PM, Hohl A, Bachega TA. Effects of endocrine disruptors in the development of the female reproductive tract. Arq Bras Endocrinol Metabol. 2014;58:153–61.

    Article  PubMed  Google Scholar 

  82. Ozen S, Darcan S. Effects of environmental endocrine disruptors on pubertal development. J Clin Res Pediatr Endocrinol. 2011;3:1–6.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Mlynarcikova A, Nagyova E, Fickova M, Scsukova S. Effects of selected endocrine disruptors on meiotic maturation, cumulus expansion, synthesis of hyaluronan and progesterone by porcine oocyte-cumulus complexes. Toxicol In Vitro. 2009;23:371–7.

    Article  CAS  PubMed  Google Scholar 

  84. Azziz R, Carmina E, Dewailly D, Diamanti-Kandarakis E, Escobar-Morreale HF, Futterweit W, et al. Position statement: criteria for defining polycystic ovary syndrome as a predominantly hyperandrogenic syndrome. An Androgen Excess Society guideline. J Clin Endocrinol Metab. 2006;91:4237–45.

    Article  CAS  PubMed  Google Scholar 

  85. Legro RS, Azziz R, Giudice L. A twenty-first century research agenda for polycystic ovary syndrome. Best Pract Res Clin Endocrinol Metab. 2006;20:331–6.

    Article  PubMed  Google Scholar 

  86. Franks S, Mason H, Willis D. Follicular dynamics in the polycystic ovary syndrome. Mol Cell Endocrinol. 2000;163:49–52.

    Article  CAS  PubMed  Google Scholar 

  87. Yildiz BO, Knochenhauer ES, Azziz R. Impact of obesity on the risk for polycystic ovary syndrome. J Clin Endocrinol Metab. 2008;93:162–8.

    Article  CAS  PubMed  Google Scholar 

  88. Kandaraki E, Chatzigeorgiou A, Livadas S, Palioura E, Economou F, Koutsilieris M, et al. Endocrine disruptors and polycystic ovary syndrome (PCOS): elevated serum levels of bisphenol A in women with PCOS. J Clin Endocrinol Metab. 2011;96:480–4.

    Article  CAS  Google Scholar 

  89. Miao M, Yuan W, Yang F, Liang H, Zhou Z, Li R, et al. Associations between Bisphenol A exposure and reproductive hormones among female workers. Int J Environ Res Public Health. 2015;12:13240–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Eichenlaub-Ritter U, Vogt E, Cukurcam S, Sun F, Pacchierotti F, Parry J. Exposure of mouse oocytes to bisphenol A causes meiotic arrest but not aneuploidy. Mutat Res. 2008;651:82–92.

    Article  CAS  PubMed  Google Scholar 

  91. Li Y, Zhang W, Liu J, Wang W, Li H, Zhu J, et al. Prepubertal bisphenol A exposure interferes with ovarian follicle development and its relevant gene expression. Reprod Toxicol. 2014;44:33–40.

    Article  PubMed  CAS  Google Scholar 

  92. Rivera OE, Varayoud J, Rodríguez HA, Muñoz-de-Toro M, Luque EH. Neonatal exposure to bisphenol A or diethylstilbestrol alters the ovarian follicular dynamics in the lamb. Reprod Toxicol. 2011;32:304–12.

    Article  CAS  PubMed  Google Scholar 

  93. Susiarjo M, Hassold TJ, Freeman E, Hunt PA. Bisphenol A exposure in utero disrupts early oogenesis in the mouse. PLoS Genet. 2007;3:e5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Zhou W, Liu J, Liao L, Han S, Liu J. Effect of bisphenol A on steroid hormone production in rat ovarian theca-interstitial and granulosa cells. Mol Cell Endocrinol. 2008;283(1–2):12–8.

    Article  CAS  PubMed  Google Scholar 

  95. Fact Sheet. The patient education website of the American Society for reproductive medicine. 2012. www.ReproductiveFacts.org.

  96. Berkowitz G. Limitations of a case–control study on bisphenol A (BPA) serum levels and recurrent miscarriage. Hum Reprod. 2006;21:565–6.

    Article  PubMed  Google Scholar 

  97. Fenichel P, Dechaux H, Harthe C, Gal J, Ferrari P, Pacini P, et al. Unconjugated bisphenol A cord blood levels in boys with descended or undescended testes. Hum Reprod. 2012;27:983–90.

    Article  CAS  PubMed  Google Scholar 

  98. Sugiura-Ogasawara M, Ozaki Y, Sonta S, Makino T, Suzumori K. Exposure to bisphenol A is associated with recurrent miscarriage. Hum Reprod. 2005;20:2325–9.

    Article  CAS  PubMed  Google Scholar 

  99. Caserta D, Di Segni N, Mallozzi M, Giovanale V, Mantovani A, Marci R, et al. Bisphenol A and the female reproductive tract: an overview of recent laboratory evidence and epidemiological studies. Reprod Biol Endocrinol. 2014;12:37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Peretz J, Vrooman L, Ricke WA, Hunt PA, Ehrlich S, Hauser R, et al. Bisphenol A and reproductive health: update of experimental and human evidence, 2007–2013. Environ Health Perspect. 2014;122:775–86.

    PubMed  PubMed Central  Google Scholar 

  101. Wallach EE, Vlahos NF. Uterine myomas: an overview of development, clinical features, and management. Obstet Gynecol. 2004;104:393–406.

    Article  PubMed  Google Scholar 

  102. Hunter DS, Hodges LC, Eagon PK, Vonier PM, Fuchs-Young R, Bergerson JS, et al. Influence of exogenous estrogen receptor ligands on uterine leiomyoma: evidence from an in vitro/in vivo animal model for uterine fibroids. Environ Health Perspect. 2000;108(Suppl 5):829–34.

    Article  CAS  PubMed  Google Scholar 

  103. Hiroi H, Tsutsumi O, Takeuchi T, Momoeda M, Ikezuki Y, Okamura A, et al. Differences in serum bisphenol A concentrations in premenopausal normal women and women with endometrial hyperplasia. Endocr J. 2004;51:595–600.

    Article  CAS  PubMed  Google Scholar 

  104. Sinha P, Kuruba N. Premature ovarian failure. J Obstet Gynaecol. 2007;27:16–9.

    Article  CAS  PubMed  Google Scholar 

  105. McNatty KP, Reader K, Smith P, Heath DA, Juengel JL. Control of ovarian follicular development to the go-nadotrophin-dependent phase: a 2006 perspective. Soc Reprod Fertil Suppl. 2007;64:55–68.

    CAS  PubMed  Google Scholar 

  106. Kaipia A, Hsueh AJ. Regulation of ovarian follicle atresia. Annu Rev Physiol. 1997;59:349–63.

    Article  CAS  PubMed  Google Scholar 

  107. Kirigaya A, Kim H, Hayashi S, Chambon P, Watanabe H, Lguchi T, et al. Involvement of estrogen receptor beta in the induction of polyovular follicles in mouse ovaries exposed neonatally to diethylstilbestrol. Zool Sci. 2009;26(10):704–12.

    Article  CAS  PubMed  Google Scholar 

  108. Newbold RR, Jefferson WN, Padilla-Banks E. Prenatal exposure to bisphenol A at environmentally relevant doses adversely affects the murine female reproductive tract later in life. Environ Health Perspect. 2009;117(6):879–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Brieno-Enríquez MA, Reig-Viader R, Cabero L, Toran N, Martínez F, Roig I, et al. Gene expression is altered after bisphenol A exposure in human fetal oocytes in vitro. Mol Hum Reprod. 2012;18(4):171–83.

    Article  PubMed  CAS  Google Scholar 

  110. Hoyer PB, Devine PJ, Hu X, Thompson KE, Sipes IG. Ovarian toxicity of 4-vinylcyclohexene diepoxide: a mechanistic model. Toxicol Pathol. 2001;29(1):91–9.

    Article  CAS  PubMed  Google Scholar 

  111. Kappeler CJ, Hoyer PB. 4-vinylcyclohexene diepoxide: a model chemical for ovotoxicity. Syst Biol Reprod Med. 2012;58(1):57–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Gaido KW, Maness SC, McDonnell DP, Dehal SS, Kupfer D, Safe S. Interaction of methoxychlor and related compounds with estrogen receptor alpha and beta, and androgen receptor: structure-activity studies. Mol Pharmacol. 2000;58(4):852–8.

    Article  CAS  PubMed  Google Scholar 

  113. Colborn T, Demanoski D, Myers JP. Our stolen future. New York: Penguin; 1997.

    Google Scholar 

  114. Markey CM, Rubin BS, Soto AM, Sonnenschein C. Endocrine disruptors: from wingspread to environmental developmental biology. J Steroid Biochem Mol Biol. 2002;83:235–44.

    Article  CAS  PubMed  Google Scholar 

  115. Richter CA, Birnbaum LS, Farabollini F, Newbold RR, Rubin BS, Talsness CE, et al. In vivo effects of bisphenol A in laboratory rodent studies. Reprod Toxicol. 2007;24:199–224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Zalko D, Soto AM, Dolo L, Dorio C, Rathahao E, Debrauwer L, et al. Biotransformations of bisphenol A in a mammalian model: answers and new questions raised by low-dose metabolic fate studies in pregnant CD1 mice. Environ Health Perspect. 2003;111:309–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Munoz-de-Toro M, Markey CM, Wadia PR, Luque EH, Rubin BS, Sonnenschein C, et al. Perinatal exposure to bisphenol-A alters peri-pubertal mammary gland development in mice. Endocrinology. 2005;146:4138–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Murray TJ, Maffini MV, Ucci AA, Sonnenschein C, Soto AM. Induction of mammary gland ductal hyperplasia and carcinoma in situ following fetal bisphenol A exposure. Reprod Toxicol. 2007;23:383–90.

    Article  CAS  PubMed  Google Scholar 

  119. Durando M, Kass L, Piva J, Sonnenschein C, Soto AM, Luque EH, et al. Prenatal bisphenol A exposure induces preneoplastic lesions in the mammary gland in Wistar rats. Environ Health Perspect. 2007;115:80–6.

    Article  CAS  PubMed  Google Scholar 

  120. Brown NM, Manzolillo PA, Zhang JX, Wang J, Lamartiniere CA. Prenatal TCDD and predisposition to mammary cancer in the rat. Carcinogenesis. 1998;19:1623–9.

    Article  CAS  PubMed  Google Scholar 

  121. Fenton SE. Endocrine-disrupting compounds and mammary gland development: early exposure and later life consequences. Endocrinology. 2006;147:S18–24.

    Article  CAS  PubMed  Google Scholar 

  122. Olive DL, Schwartz LB. Endometriosis. N Engl J Med. 1993;328:1759–69.

    Article  CAS  PubMed  Google Scholar 

  123. Igarashi T, Osuga U, Tsutsumi O, Momoeda M, Ando K, Matsumi H, et al. Expression of Ah receptor and dioxin-related genes in human uterine endometrium in women with or without endometriosis. Endocr J. 1999;46:765–72.

    Article  CAS  PubMed  Google Scholar 

  124. Kuchenhoff A, Seliger G, Klonisch T, Tscheudschilsuren G, Kaltwasser P, Seliger E, et al. Arylhydrocarbon receptor expression in the human endometrium. Fertil Steril. 1999;71:354–60.

    Article  CAS  PubMed  Google Scholar 

  125. Rier S, Foster WG. Environmental dioxins and endometriosis. Toxicol Sci. 2002;70:161–70.

    Article  CAS  PubMed  Google Scholar 

  126. Porpora MG, Ingelido AM, di Domenico A, Ferro A, Crobu M, Pallante D, et al. Increased levels of polychlorobiphenyls in Italian women with endometriosis. Chemosphere. 2006;63:1361–7.

    Article  CAS  PubMed  Google Scholar 

  127. Bruner-Tran KL, Osteen KG. Dioxin-like PCBs and endometriosis. Syst Biol Reprod Med. 2010;56(2):132–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Crain DA, Janssen SJ, Edwards TM, Heindel J, Ho SM, Hunt P, et al. Female reproductive disorders: the roles of endocrine-disrupting compounds and developmental timing. Fertil Steril. 2008;90:911–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Ibanez L, Ferrer A, Marcos MV. Early puberty: rapid progression and reduced final height in girls with low birth weight. Paediatrics. 2000;106:1–3.

    Article  Google Scholar 

  130. Chittwar SS, Ammini AC. Precocious puberty in girls. Indian J Endocrinol Metab. 2012;16:S188–91.

    PubMed  PubMed Central  Google Scholar 

  131. Neely EK, Crossen SS. Precocious puberty. Curr Opin Obstet Gynecol. 2014;26:332–8.

    Article  PubMed  Google Scholar 

  132. Kotwal N, Yanamandra U, Menon AS, Nair V. Central precocious puberty due to hypothalamic hamartoma in a six-month-old infant girl. Indian J Endocrinol Metab. 2012;16:627–30.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Mogensen SS, Aksglaede L, Mouritsen A, Sorensen K, Main KM, Gideon P, et al. Pathological and incidental findings on brain MRI in a single center study of 229 consecutive girls with early or precocious puberty. PLoS One. 2012;7:e29829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Trivin C, Couto-Silva AC, Sainte-Rose C, Chemaitilly W, Kalifa C, Doz F, et al. Presentation and evolution of organic central precocious puberty according to the type of CNS lesion. Clin Endocrinol. 2006;65:239–45.

    Article  Google Scholar 

  135. Blanck HM, Marcus M, Hertzberg V, Tolbert PE, Rubin C, Henderson AK, et al. Determinants of polybrominated biphenyl serum decay among women in the Michigan PBB cohort. Environ Health Perspect. 2000a;108:147–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Blanck HM, Marcus M, Tolbert PE, Rubin C, Henderson AK, Hertzberg VS, et al. Age at menarche and tanner stage in girls exposed in utero and postnatally to polybrominated biphenyl. Epidemiology. 2000b;11:641–7.

    Article  CAS  PubMed  Google Scholar 

  137. Gladen BC, Ragan NB, Rogan WJ. Pubertal growth and development and prenatal and lactational exposure to polychlorinated biphenyls and dichlorodiphenyl dichloroethene. J Pediatr. 2000;136:490–6.

    Article  CAS  PubMed  Google Scholar 

  138. Wade MG, Desaulniers D, Leingartner K, Foster WG. Interaction between endosulfan and dieldrin on estrogen-mediated processes in vitro and in vivo. Reprod Toxicol. 1997;11:791–8.

    Article  CAS  PubMed  Google Scholar 

  139. Denham M, Schell LM, Deane G, Gallo MV, Ravenscroft J, DeCaprio AP, Task Force on the Environment, et al. Relationship of lead, mercury, mirex, dichlorodiphenyldichloroethylene, hexachlorobenzene, and polychlorinated biphenyls to timing of menarche among Akwesasne Mohawk girls. Pediatrics. 2005;115:127–34.

    Article  Google Scholar 

  140. Yang CY, Yu ML, Guo HR, Lai TJ, Hsu CC, Lambert G, et al. The endocrine and reproductive function of the female Yucheng adolescents prenatally exposed to PCBs/PCDFs. Chemosphere. 2005;61:355–60.

    Article  CAS  PubMed  Google Scholar 

  141. Den Hond E, Roels HA, Hoppenbrouwers K, Nawrot T, Thijs L, Vandermeulen C, et al. Sexual maturation in relation to polychlorinated aromatic hydrocarbons: Sharpe and Skakkebaek’s hypothesis revisited. Environ Health Perspect. 2002;110:771–6.

    Article  Google Scholar 

  142. Colon I, Caro D, Bourdony CJ, Rosario O. Identification of phthalate esters in the serum of young Puerto Rican girls with premature breast development. Environ Health Perspect. 2000;108:895–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Fernández M, Bianchi M, Lux-Lantos V, Libertun C. Neonatal exposure to bisphenol A alters reproductive parameters and gonadotropin releasing hormone signaling in female rats. Environ Health Perspect. 2009;117(5):757–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Selevan SG, Rice DC, Hogan KA, Euling SY, Pfahles-Hutchens A, Bethel J. Blood lead concentration and delayed puberty in girls. N Engl J Med. 2003;348:1527–36.

    Article  CAS  PubMed  Google Scholar 

  145. Wu T, Buck GM, Mendola P. Blood lead levels and sexual maturation in US girls: the third National Health and Nutrition Examination Survey, 1988–1994. Environ Health Perpect. 2003;111:737–41.

    Article  CAS  Google Scholar 

  146. Auso E, Lavado-Autric R, Cuevas E, Del Rey FE, Morreale DE, Berbel P. A moderate and transient deficiency of maternal thyroid function at the beginning of fetal neocorticogenesis alters neuronal migration. Endocrinology. 2004;145:4037–47.

    Article  CAS  PubMed  Google Scholar 

  147. Berbel P, Mestre JL, Santamaria A, Palazon I, Franco A, Graells M, et al. Delayed neurobehavioral development in children born to pregnant women with mild hypothyroxinemia during the first month of gestation: the importance of early iodine supplementation. Thyroid. 2009;19:511–9.

    Article  CAS  PubMed  Google Scholar 

  148. Boas M, Feldt-Rasmussen U, Main KM. Thyroid effects of endocrine disrupting chemicals. Mol Cell Endocrinol. 2012;355:240–8.

    Article  CAS  PubMed  Google Scholar 

  149. Howdeshell KL. A model of the development of the brain as a construct of the thyroid system. Environ Health Perspect. 2002;110(3):337–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Brucker-Davis F. Effects of environmental synthetic chemicals on thyroid function. Thyroid. 1998;8:827–56.

    Article  CAS  PubMed  Google Scholar 

  151. Gauger KJ, Kato Y, Haraguchi K, Lehmler HJ, Robertson LW, Bansal R, et al. Polychlorinated biphenyls (PCBs) exert thyroid hormone-like effects in the fetal rat brain but do not bind to thyroid hormone receptors. Environ Health Perspect. 2004;112:516–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Martin L, Klaassen CD. Differential effects of polychlorinated biphenyl congeners on serum thyroid hormone levels in rats. Toxicol Sci. 2010;117:36–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Pavuk M, Schecter AJ, Akhtar FZ, et al. Serum 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) levels and thyroid function in Air Force veterans of the Vietnam War. Ann Epidemiol. 2003;13:335–43.

    Article  PubMed  Google Scholar 

  154. Baccarelli A, Giacomini SM, Corbetta C, et al. Neonatal thyroid function in Seveso 25 years after maternal exposure to dioxin. PLoS Med. 2008;5:e161.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Li F, Xie Q, Li X, Li N, Chi P, Chen J, et al. Hormone activity of hydroxylated polybrominated diphenyl ethers on human thyroid receptor-beta: in vitro and in silico investigations. Environ Health Perspect. 2010;118:602–6.

    Article  CAS  PubMed  Google Scholar 

  156. Meerts IA, van Zanden JJ, Luijks EA, Leeuwen-Bol I, Marsh G, Jakobsson E. Potent competitive interactions of some brominated flame retardants and related compounds with human transthyretin in vitro. Toxicol Sci. 2000;56:95–104.

    Article  CAS  PubMed  Google Scholar 

  157. Fini JB, Le MS, Turque N, Palmier K, Zalko D, Cravedi JP, et al. An in vivo multiwell-based fluorescent screen for monitoring vertebrate thyroid hormone disruption. Environ Sci Technol. 2007;41:5908–14.

    Article  CAS  PubMed  Google Scholar 

  158. Jagnytsch O, Opitz R, Lutz I, Kloas W. Effects of tetrabromobisphenol a on larval development and thyroid hormone-regulated biomarkers of the amphibian Xenopus laevis. Environ Res. 2006;101:340–8.

    Article  CAS  PubMed  Google Scholar 

  159. Hallgren S, Sinjari T, Hakansson H, Darnerud PO. Effects of polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) on thyroid hormone and vitamin A levels in rats and mice. Arch Toxicol. 2001;75:200–8.

    Article  CAS  PubMed  Google Scholar 

  160. Richardson VM, Staskal DF, Ross DG, Diliberto JJ, DeVito MJ, Birnbaum LS. Possible mechanisms of thyroid hormone disruption in mice by BDE 47, a major polybrominated diphenyl ether congener. Toxicol Appl Pharmacol. 2008;226:244–50.

    Article  CAS  PubMed  Google Scholar 

  161. Zhou LX, Dehal SS, Kupfer D, Morrell S, McKenzie BA, Eccleston ED Jr, et al. Cytochrome P450 catalyzed covalent binding of methoxychlor to rat hepatic, microsomal iodothyronine 50-monodeiodinase, type I: does exposure to methoxychlor disrupt thyroid hormone metabolism? Arch Biochem Biophys. 1995;322:390–4.

    Article  CAS  PubMed  Google Scholar 

  162. Olsen GW, Zobel LR. Assessment of lipid, hepatic, and thyroid parameters with serum perfluorooctanoate (PFOA) concentrations in fluorochemical production workers. Int Arch Occup Environ Health. 2007;81:231–46.

    Article  CAS  PubMed  Google Scholar 

  163. Chang SC, Thibodeaux JR, Eastvold ML, Ehresman DJ, Bjork JA, Froehlich JW, et al. Thyroid hormone status and pituitary function in adult rats given oral doses of perfluorooctanesulfonate (PFOS). Toxicology. 2008;36:330–9.

    Article  CAS  Google Scholar 

  164. Yu WG, Liu W, Jin YH. Effects of perfluorooctane sulfonate on rat thyroid hormone biosynthesis and metabolism. Environ Toxicol Chem. 2009;28:990–6.

    Article  CAS  PubMed  Google Scholar 

  165. Huang PC, Kuo PL, Guo YL, Liao PC, Lee CC. Associations between urinary phthalate monoesters and thyroid hormones in pregnant women. Hum Reprod. 2007;22:2715–22.

    Article  CAS  PubMed  Google Scholar 

  166. Freitas J, Cano P, Craig-Veit C, Goodson ML, David FJ, Murk AJ. Detection of thyroid hormone receptor disruptors by a novel stable in vitro reporter gene assay. Toxicol In Vitro. 2011;25:257–66.

    Article  CAS  PubMed  Google Scholar 

  167. Sun W, Ban J-B, Zhang N, Zu Y-K, Sun W-X. Perinatal exposure to di-(2-ethylhexyl)-phthalate leads to cognitive dysfunction and phospho-tau level increase in aged rats. Environ Toxicol. 2014;29(5):596–603.

    Article  CAS  PubMed  Google Scholar 

  168. Hofmann PJ, Schomburg L, Kohrle J. Interference of endocrine disrupters with thyroid hormone receptor-dependent transactivation. Toxicol Sci. 2009;110:125–37.

    Article  CAS  PubMed  Google Scholar 

  169. Zoeller RT, Bansal R, Parris C. Bisphenol-A, an environmental contaminant that acts as a thyroid hormone receptor antagonist in vitro, increases serum thyroxine, and alters RC3/neurogran in expression in the developing rat brain. Endocrinology. 2005;146:607–12.

    Article  CAS  PubMed  Google Scholar 

  170. Dundar B, Oktem F, Arslan MK, et al. The effect of long-term low-dose lead exposure on thyroid function in adolescents. Environ Res. 2006;101:140–5.

    Article  CAS  PubMed  Google Scholar 

  171. Rodier PM. Developing brain as a target of toxicity. Environ Health Perspect. 1995;103(6):73–6.

    Article  PubMed  PubMed Central  Google Scholar 

  172. Rice D, Barone S Jr. Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ Health Perspect. 2000;108(Suppl 3):511–33.

    Article  PubMed  PubMed Central  Google Scholar 

  173. Andersen HR, Nielsen JB, Grandjean P. Toxicologic evidence of developmental neurotoxicity of environmental chemicals. Toxicology. 2000;144:121–7.

    Article  CAS  PubMed  Google Scholar 

  174. Ginsberg G, Hattis D, Sonawane B. Incorporating pharmacokinetic differences between children and adults in assessing children’s risks to environmental toxicants. Toxicol Appl Pharmacol. 2004;198:164–83.

    Article  CAS  PubMed  Google Scholar 

  175. National Research Council. Pesticides in the diets of infants and children. Washington: National Academy; 1993.

    Google Scholar 

  176. Rutter M. Incidence of autism spectrum disorders: changes over time and their meaning. Acta Paediatr. 2005;94:2–15.

    Article  CAS  PubMed  Google Scholar 

  177. Landrigan PJ, Schechter CB, Lipton JM, Fahs MC, Schwartz J. Environmental pollutants and disease in American children: estimates of morbidity, mortality, and costs for lead poisoning, asthma, cancer, and developmental disabilities. Environ Health Perspect. 2002;110:721–08.

    Article  PubMed  PubMed Central  Google Scholar 

  178. Mendola P, Selevan SG, Gutter S, Rice D. Environmental factors associated with a spectrum of neurodevelopmental deficits. Ment Retard Dev Disabil Res Rev. 2002;8:188–97.

    Article  PubMed  Google Scholar 

  179. National Research Council. Scientific frontiers in developmental toxicology and risk assessment. Washington: National Academy; 2000.

    Google Scholar 

  180. Trasande L, Landrigan PJ, Schechter C. Public health and economic consequences of methyl mercury toxicity to the developing brain. Environ Health Perspect. 2005;113:590–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Schantz SL, Widholm JJ, Rice DC. Effects of PCB exposure on neuropsychological function in children. Environ Health Perspect. 2003;111(3):357–576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Jacobson LJ, Jacobson SW. Prenatal exposure to polychlorinated biphenyls and attention at school age. J Pediatr. 2003;143(6):780–8.

    Article  CAS  PubMed  Google Scholar 

  183. Vreugdenhil HJ, Mulder PG, Emmen HH, Weisglas-Kuperus N. Effects of perinatal exposure to PCBs on neuropsychological functions in the Rotterdam cohort at 9 years of age. Neuropsychology. 2004;18(1):185–93.

    Article  PubMed  Google Scholar 

  184. Guo YL, Lambert GH, Hsu CC, Hsu MM. Yucheng: health effects of prenatal exposure to polychlorinated biphenyls and dibenzofurans. Int Arch Occup Environ Health. 2004;77(3):153–8.

    Article  CAS  PubMed  Google Scholar 

  185. Edwards SC, Jedrychowski W, Butscher M, Camann D, Kieltyka A, Mroz E, et al. Prenatal exposure to airborne polycyclic aromatic hydrocarbons and children’s intelligence at 5 years of age in a prospective cohort study in Poland. Environ Health Perspect. 2010;118(9):1326–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Perera FP, Rauh V, Whyatt RM, Tsai WY, Tang D, Diaz D, et al. Effect of prenatal exposure to airborne polycyclic aromatic hydrocarbons on neurodevelopment in the first 3 years of life among inner-city children. Environ Health Perspect. 2006;114(8):1287–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Takeda K, Tsukue N, Yoshida S. Endocrine-disrupting activity of chemicals in diesel exhaust and diesel exhaust particles. Environ Sci. 2004;11(1):33–45.

    CAS  PubMed  Google Scholar 

  188. Yokota S, Mizuo K, Moriya N, Oshio S, Sugawara I, Takeda K. Effect of prenatal exposure to diesel exhaust on dopaminergic system in mice. Neurosci Lett. 2009;449(1):38–41.

    Article  CAS  PubMed  Google Scholar 

  189. Perera F, Herbstman J. Prenatal environmental exposures, epigenetics, and disease. Reprod Toxicol. 2011;31(3):363373.

    Article  CAS  Google Scholar 

  190. Engel SM, Zhu C, Berkowitz GS, Calafat AM, Silva MJ, Miodovnik A. Prenatal phthalate exposure and performance on the Neonatal Behavioral Assessment Scale in a multiethnic birth cohort. Neurotoxicology. 2009;30(4):522–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Miodovnik A, Engel SM, Zhu C, Ye X, Soorya LV, Silva MJ, et al. Endocrine disruptors and childhood social impairment. Neurotoxicology. 2011;32(2):261–7.

    Article  CAS  PubMed  Google Scholar 

  192. Swan SH, Liu F, Hines M, Kruse RL, Wang C, Redmon JB, et al. Prenatal phthalate exposure and reduced masculine play in boys. Int J Androl. 2010;33(2):259–69.

    Article  CAS  PubMed  Google Scholar 

  193. Yolton K, Xu Y, Strauss D, Altaye M, Calafat AM, Khoury J. Prenatal exposure to bisphenol A and phthalates and infant neurobehavior. Neurotoxicol Teratol. 2011;33(5):558–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Perera F, Vishnevetsky J, Herbstman JB, Calafat AM, Xiong W, Rauh V, et al. Prenatal bisphenol A exposure and child behavior in an inner-city cohort. Environ Health Perspect. 2012;120(8):1190–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Jones DC, Miller GW. The effects of environmental neurotoxicants on the dopaminergic system: a possible role in drug addiction. Biochem Pharmacol. 2008;76(5):569–81.

    Article  CAS  PubMed  Google Scholar 

  196. Narita M, Mitagawa K, Mizuo K, Yoshida T, Sizuki T. Prenatal and neonatal exposure to low-dose of bisphenol-A enhance the morphine-induced hyperlocomotion and rewarding effect. Neurosci Lett. 2006;402(3):249–52.

    Article  CAS  PubMed  Google Scholar 

  197. Rauh V, Arunajadai S, Horton M, Perera F, Hoepner L, Barr DB, et al. Seven-year neurodevelopmental scores and prenatal exposure to chlorpyrifos, a common agricultural pesticide. Environ Health Perspect. 2011;119(8):1196–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Rauh VA, Perera FP, Horton MK, Whyatt RM, Bansal R, Hao X, et al. Brain anomalies in children exposed prenatally to a common organophosphate pesticide. Proc Natl Acad Sci U S A. 2012;109(20):7871–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Bigler ED, Mortensen S, Neeley ES, Ozonoff S, Krasny L, Johnson M, et al. Superior temporal gyrus, language function, and autism. Dev Neuropsychol. 2007;31(2):217–38.

    Article  PubMed  Google Scholar 

  200. Elliott R, Deakin B. Role of the orbitofrontal cortex in reinforcement processing and inhibitory control: evidence from functional magnetic resonance imaging studies in healthy human subjects. Int Rev Neurobiol. 2005;65:89–116.

    Article  PubMed  Google Scholar 

  201. Forbes CE, Grafman J. The role of the human prefrontal cortex in social cognition and moral judgment. Annu Rev Neurosci. 2010;33:299–324.

    Article  CAS  PubMed  Google Scholar 

  202. Shelton JF, Hertz-Picciotto I, Pessah IN. Tipping the balance of autism risk: potential mechanisms linking pesticides and autism. Environ Health Perspect. 2012;120(7):944–51.

    Article  PubMed  PubMed Central  Google Scholar 

  203. Ohtani-Kaneko R, Tazawa H, Yokosuka M, Yoshida M, Satoh M, Watanabe C. Suppressive effects of cadmium on neurons and affected proteins in cultured developing cortical cells. Toxicology. 2008;253(1-3):110–6.

    Article  CAS  PubMed  Google Scholar 

  204. Hines M. Prenatal testosterone and gender-related behaviour. Eur J Endocrinol. 2006;155(1):S115–21.

    Article  CAS  PubMed  Google Scholar 

  205. Jirtle RL, Skinner MK. Environmental epigenomics and disease susceptibility. Nat Rev Genet. 2007;8(4):253–62.

    Article  CAS  PubMed  Google Scholar 

  206. Klose RJ, Bird AP. Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci. 2006;31:89–97.

    Article  CAS  PubMed  Google Scholar 

  207. Li E. Chromatin modification and epigenetic reprogramming in mammalian development. Nat Rev Genet. 2002;3:662–73.

    Article  CAS  PubMed  Google Scholar 

  208. Talbert PB, Henikoff S. Spreading of silent chromatin: inaction at a distance. Nat Rev Genet. 2006;7:793–803.

    Article  CAS  PubMed  Google Scholar 

  209. Chan TL, Yuen ST, Kong CK, Chan YW, Cahn AS, Ng WF, et al. Heritable germline epimutation of MSH2 in a family with hereditary nonpolyposis colorectal cancer. Nat Genet. 2006;38:1178–83.

    Article  CAS  PubMed  Google Scholar 

  210. Suter CM, Martin DI, Ward RL. Germline epimutation of MLH1 in individuals with multiple cancers. Nat Genet. 2004;36:497–501.

    Article  CAS  PubMed  Google Scholar 

  211. Anway MD, Cupp AS, Uzumcu M, Skinner MK. Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science. 2005;308:1466–9.

    Article  CAS  PubMed  Google Scholar 

  212. Pembrey ME, Bygren LO, Kaati G, Edvinsson S, Northstone K, Sjöström M, Golding J. Sex-specific, male-line transgenerational responses in humans. Eur J Hum Genet. 2006;14:159–66.

    Article  PubMed  Google Scholar 

  213. Rakyan VK, Chong S, Champ ME, Cuthbert PC, Morgan HD, Luu KV, et al. Transgenerational inheritance of epigenetic states at the murine Axin(Fu) allele occurs after maternal and paternal transmission. Proc Natl Acad Sci U S A. 2003;100:2538–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Andersen HR, Schmidt IM, Grandjean P, Jensen TK, Budtz-Jorgensen E, Kjaerstad MB, et al. Impaired reproductive development in sons of women occupationally exposed to pesticides during pregnancy. Environ Health Perspect. 2008;116(4):566–72.

    Article  PubMed  PubMed Central  Google Scholar 

  215. Dolinoy DC, Huang D, Jirtle RL. Maternal nutrient supplementation counteracts bisphenol A- induced DNA hypomethylation in early development. Proc Natl Acad Sci U S A. 2007;104(32):13056–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Novikova SI, He F, Bai J, Cutrufello NJ, Lidow MS, Undieh AS. Maternal cocaine administration in mice alters DNA methylation and gene expression in hippocampal neurons of neonatal and prepubertal offspring. PLoS One. 2008;3(4):e1919.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  217. Perera F, Tang WY, Herbstman J, Tang D, Levin L, Miller R, et al. Relation of DNA methylation of 5’-CpG island of ACSL3 to transplacental exposure to airborne polycyclic aromatic hydrocarbons and childhood asthma. PLoS One. 2009;4(2):e4488.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  218. Yaoi T, Itoh K, Nakamura K, Ogi H, Fujiwara Y, Fushiki S. Genome-wide analysis of epigenomic alterations in fetal mouse forebrain after exposure to low doses of bisphenol A. Biochem Biophys Res Commun. 2008;376(3):563–7.

    Article  CAS  PubMed  Google Scholar 

  219. Andre SM, Markowski VP. Learning deficits expressed as delayed extinction of a conditioned running response following perinatal exposure to vinclozolin. Neurotoxicol Teratol. 2006;28(4):482–8.

    Article  CAS  PubMed  Google Scholar 

  220. Crews D, Gore AC, Hsu TS, Dangleben NL, Spinetta M, Schallert T, et al. Transgenerational epigenetic imprints on mate preference. Proc Natl Acad Sci U S A. 2007;104(14):5942–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Ottinger MA, Lavoie E, Thompson N, Barton A, Whitehouse K, Barton M, et al. Neuroendocrine and behavioral effects of embryonic exposure to endocrine disrupting chemicals in birds. Brain Res Rev. 2008;57(2):376–85.

    Google Scholar 

  222. Skinner MK, Anway MD, Savenkova MI, Gore AC, Crews D. Transgenerational epigenetic programming of the brain transcriptome and anxiety behavior. PLoS One. 2008;3(11):e3745.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annamalai Jayshree .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Jayshree, A., Vasudevan, N. (2018). Health Consequences Due to Prenatal Endocrine-Disrupting Chemical Exposure. In: Capello, F., Gaddi, A. (eds) Clinical Handbook of Air Pollution-Related Diseases. Springer, Cham. https://doi.org/10.1007/978-3-319-62731-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62731-1_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62730-4

  • Online ISBN: 978-3-319-62731-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics