Skip to main content

Yeasts in Forest Soils

  • Chapter
  • First Online:

Abstract

Soil yeasts are common inhabitants of various soils, including those in forest biotopes. Historically, yeasts were studied mainly in vineyard, orchard and agricultural soils. Due to limited ecological surveys, yeasts represent yet a poorly known fraction of the microorganisms in forest soils. Our knowledge of soil yeasts is biased towards temperate and boreal forests, whereas data from Africa, Americas and Asia is scarce. Forest soils in the Southern hemisphere are strongly undersampled.

This chapter provides the first comprehensive review of yeasts in forest soils, their diversity, nutrition, traits and possible ecosystem services. Basidiomycetes are dominant in forest soils, but ascomycetes genera, including several fermenting yeasts, are also permanent residents in the soil. A particular focus in the chapter is dedicated to the review of yeast diversity after reclassification of previously polyphyletic yeast genera Cryptococcus, Rhodotorula and Trichosporon. Factors influencing distribution of soils yeasts are also discussed in this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahansal L, Sassi AB, Martini A, Vaughan-Martini A, Walker G, Boussaid A (2008) Biodiversity of yeasts isolated from the indigenous forest of Argan (Argania spinosa (L.) Skeels) in Morocco. World J Microbiol Biotechnol 24:777–782

    Article  Google Scholar 

  • Aksenov SI, Babjeva IP, Golubev WI (1972) The investigation of desiccation–moistening cycles in Cryptococcus albidus var. diffluens by the NMR–Spin Echo technique. Biol Bull (former Izvestiya Rossiiskoi Akademii Nauk, Seriya Biologicheskaya) 4:545–558 (in Russian)

    Google Scholar 

  • Aleksandrova VD (2012) Russian approaches to classification of vegetation. In: Whittaker RH (ed) Classification of plant communities. Springer, Heidelberg, pp 167–200

    Google Scholar 

  • Arteaga-Reyes E, Echegaray-Aleman A, Garcia-Trejo A (1977) An improved method to isolate yeasts from soil. Soil Biol Biochem 9:367–369

    Article  Google Scholar 

  • Babjeva IP (1969) To the methods of enumeration of yeasts in soils. Biologiceskie nauki (former Nauchnye Doklady Vysshei Shkoly. Biologicheskie Nauki) 12:113–118 (in Russian)

    Google Scholar 

  • Babjeva IP, Chernov IY (1995) Geographic aspects of yeast ecology. Physiol Gen Biol Rev 9:1–54

    Google Scholar 

  • Babjeva IP Golovleva LA (1963) Yeast flora of the main soil types of the European part of the USSR. In: Microorganisms in agriculture. Moscow State Univ Press, pp 231–251 (in Russian)

    Google Scholar 

  • Babjeva IP, Gorin SE (1987) Soil yeasts. Moscow State Univ Press, Moscow (in Russian)

    Google Scholar 

  • Babjeva IP. Reshetova IS (1972) Quantity and biomass of yeast cells in soils. In: Current issues concerning the quantity, biomass and efficiency of soil organisms. Nauka, Leningrad, pp 71–79 (in Russian)

    Google Scholar 

  • Babjeva IP, Reshetova IS (1975) A new yeast species Candida podzolica sp. nov. isolated from the soil. Microbiology 44:333–338 (in Russian)

    Google Scholar 

  • Babjeva IP, Reshetova IS (1996) Taxonomic analysis of yeast fungi in the Russian Far East. Mikol Fitopatol 30(4):10–18

    Google Scholar 

  • Babjeva IP, Reshetova IS (1998) Yeast resources in natural habitats at polar circle latitude. Food Technol Biotechnol 36:1–6

    Google Scholar 

  • Babjeva IP, Golubev VI, Kartintsev AV, Gorin SE, Zaslavskaya PL (1973) Yeasts in the structure of forest and meadow biogeocenoses. Moscow Univ Soil Sci Bull (former Vestnik Moskovskogo Universiteta. Seriia 17, Pochvovedenie) 6:67–73 (in Russian)

    Google Scholar 

  • Baldrian P (2008) Wood-inhabiting ligninolytic basidiomycetes in soils: ecology and constraints for applicability in bioremediation. Fungal Ecol 1:4–12

    Article  Google Scholar 

  • Baldrian P (2016) Forest microbiome: diversity, complexity and dynamics. FEMS Microbiol Rev 41:109–130

    Google Scholar 

  • Belda M, Holtanová E, Halenka T, Kalvová J (2014) Climate classification revisited: from Köppen to Trewartha. Clim Res 59:1–13

    Article  Google Scholar 

  • Birkhofer K, Schöning I, Alt F, Herold N, Klarner B, Maraun M, Marhan S, Oelmann Y, Wubet T, Yurkov A, Begerow D, Berner D, Buscot F, Daniel R, Diekötter T, Ehnes RB, Erdmann G, Fischer C, Foesel B, Groh J, Gutknecht J, Kandeler E, Lang C, Lohaus G, Meyer A, Nacke H, Näther A, Overmann J, Polle A, Pollierer MM, Scheu S, Schloter M, Schulze ED, Schulze W, Weinert J, Weisser WW, Wolters V, Schrumpf M (2012) General relationships between abiotic soil properties and soil biota across spatial scales and different land-use types. PLoS One 7:e43292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bisaria VS, Ghose TK (1981) Biodegradation of cellulosic materials: substrates, microorganisms, enzymes and products. Enzym Microb Technol 3:90–104

    Article  CAS  Google Scholar 

  • Blackwell M (2011) The Fungi: 1, 2, 3… 5.1 million species? Am J Bot 98:426–438

    Article  PubMed  Google Scholar 

  • Botha A (2006) Yeasts in soil. In: Rosa C, Peter G (eds) Biodiversity and ecophysiology of yeasts. Springer, Berlin, pp 221–240

    Chapter  Google Scholar 

  • Botha A (2011) The importance and ecology of yeasts in soil. Soil Biol Biochem 43:1–8

    Article  CAS  Google Scholar 

  • Boundy-Mills K (2006) Methods for investigating yeast biodiversity. In: Rosa C, Peter G (eds) Biodiversity and ecophysiology of yeasts. Springer, Berlin, pp 67–100

    Chapter  Google Scholar 

  • Bouthilet RJ (1951) A taxonomic study of soil yeasts. Mycopathol Mycol Appl 6:79–85

    Article  CAS  PubMed  Google Scholar 

  • Bridge P, Spooner B (2001) Soil fungi: diversity and detection. Plant Soil 232:147–154

    Article  CAS  Google Scholar 

  • Buee M, Reich M, Murat C, Morin E, Nilsson RH, Uroz S, Martin F (2009) 454 Pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity. New Phytol 184:449–456

    Article  CAS  PubMed  Google Scholar 

  • Byzov BA, Thanh VN, Babjeva IP (1993) Interrelationships between yeasts and soil diplopods. Soil Biol Biochem 25:1119–1126

    Article  Google Scholar 

  • Capriotti A (1967) Yeasts from USA soils. Arch Microbiol 57:406–413

    CAS  Google Scholar 

  • Cardinali G, Alli L, Corte L, Roscini L, Bagnetti A, Pelliccia C, Puddu G (2012) Kazachstania ichnusensis sp. nov., a diploid homothallic ascomycetous yeast from Sardinian lentisk rhizosphere. Int J Syst Evol Microbiol 62:722–727

    Article  CAS  PubMed  Google Scholar 

  • Carvalho P, de Souza AC, Magalhatilde KT, Dias DR, Silva CF, Schwan RF (2013) Yeasts diversity in Brazilian Cerrado soils: study of the enzymatic activities. Afr J Microbiol Res 7:4176–4190

    Article  CAS  Google Scholar 

  • Chernov IY (2005) The latitude-zonal and spatial-successional trends in the distribution of yeasts. Zh Obshch Biol 66:123–135 (in Russian)

    Google Scholar 

  • Chesworth W (ed) (2008) Encyclopedia of soil science. Springer, Berlin

    Google Scholar 

  • Christensen M (1989) A view of fungal ecology. Mycologia 81:1–19

    Article  Google Scholar 

  • Cornelissen S, Botha A, Conradie WJ, Wolfaardt GM (2003) Shifts in community composition provide a mechanism for maintenance of activity of soil yeasts in the presence of elevated copper levels. Can J Microbiol 49:425–432

    Article  CAS  PubMed  Google Scholar 

  • Danielson RM, Jurgensen MF (1973) The propagule density of Lipomyces and other yeasts in forest soils. Mycopathol Mycol Appl 51:191–198

    Article  CAS  PubMed  Google Scholar 

  • Date RA (1973) Nitrogen a major limitation in the productivity of natural communities crops and pastures in the pacific area. Soil Biol Biochem 5:5–18

    Article  CAS  Google Scholar 

  • Di Menna ME (1955) A search for pathogenic species of yeasts in New Zealand soils. Microbiology 12:54–62

    Google Scholar 

  • Di Menna ME (1957) The isolation of yeasts from soil. Microbiology 17:678–688

    Google Scholar 

  • Di Menna ME (1959) Some physiological characters of yeasts from soils and allied habitats. Microbiology 20:13–23

    Google Scholar 

  • Di Menna ME (1960) Yeasts from soils under forest and under pasture. N Z J Agr Res 3:623–632

    Article  Google Scholar 

  • Di Menna ME (1965) Yeasts in New Zealand soils. N Z J Bot 3:194–203

    Article  Google Scholar 

  • Dixon C, Fyson GF, Pasiecznik N, Praciak A, Rushforth K, Sassen M, Sheil D, Correia CS, Teeling C, van Heist M (2013) CABI encyclopedia of forest trees. CABI Publishing, Oxford

    Google Scholar 

  • Fairbridge RV (2008) History of soil science. In: Chesworth W (ed) Encyclopedia of soil science. Springer, Berlin, pp 307–312

    Chapter  Google Scholar 

  • FAO (2016) The global forest resources assessment 2015: how are the world’s forests changing? 2nd edn. The Food and Agriculture Organization of the United Nations (FAO), Rome

    Google Scholar 

  • Fell JW, Boekhout T, Fonseca A, Scorzetti G, Statzell-Tallman A (2000) Biodiversity and systematics of basidiomycetous yeasts as determined by large-subunit rDNA D1/D2 domain sequence analysis. Int J Syst Evol Microbiol 50:1351–1371

    Article  CAS  PubMed  Google Scholar 

  • Fonseca A (1992) Utilization of tartaric acid and related compounds by yeasts: taxonomic implications. Can J Microbiol 38:1242–1251

    Article  CAS  PubMed  Google Scholar 

  • Fonseca A, Inacio J (2006) Phylloplane yeasts. In: Rosa C, Peter G (eds) Biodiversity and ecophysiology of yeasts. Springer, Berlin, pp 263–301

    Chapter  Google Scholar 

  • França L, Sannino C, Turchetti B, Buzzini P, Margesin R (2016) Seasonal and altitudinal changes of culturable bacterial and yeast diversity in Alpine forest soils. Extremophiles 20:855–873

    Article  PubMed  PubMed Central  Google Scholar 

  • Glushakova AM, Chernov IY (2010) Seasonal dynamics of the structure of epiphytic yeast communities. Microbiology 79:830–839

    Article  CAS  Google Scholar 

  • Glushakova AM, Kachalkin AV, Chernov IY (2015) Effect of invasive herb species on the structure of soil yeast complexes in mixed forests exemplified by Impatiens parviflora DC. Microbiology 84:717–721

    Article  CAS  Google Scholar 

  • Glushakova AM, Kachalkin AV, Tiunov AV, Chernov IY (2017) Distribution of yeast complexes in the profiles of different soil types. Eurasian Soil Sci 50(7):820–825

    Article  CAS  Google Scholar 

  • Golubev VI (2000) Isolation of tremelloid yeasts on glucuronate medium. Microbiology 69:490–493 (in Russian)

    Google Scholar 

  • Golubev VI, Golubeva EV (2004) Yeast fungi in steppe and forest phytocenoses of the Prioksko-Terrasny Nature Reserve. Mikol Fitopatol 38:20–27 (in Russian)

    Google Scholar 

  • Golubev WI, Tomashevskaya MA (2010) Yeast fungi in Picea abies (L.) Karst. needle litter. Microbiology 79:385–389

    Article  CAS  Google Scholar 

  • Golubev VI, Babjeva IP, Novik SN (1977) Yeast succession in birch sap flows. Ekologiia 5:21–26 (in Russian)

    Google Scholar 

  • Golubtsova YV, Glushakova AM, Chernov IY (2007) The seasonal dynamics of yeast communities in the rhizosphere of soddy-podzolic soils. Eurasian Soil Sci 40:875–879

    Article  Google Scholar 

  • Groenewald M, Coutinho T, Smith MT, van der Walt JP (2012) Species reassignment of Geotrichum bryndzae, Geotrichum phurueaensis, Geotrichum silvicola and Geotrichum vulgare based on phylogenetic analyses and mating compatibility. Int J Syst Evol Microbiol 62:3072–3080

    Article  PubMed  Google Scholar 

  • Gunina A, Kuzyakov Y (2015) Sugars in soil and sweets for microorganisms: review of origin, content, composition and fate. Soil Biol Biochem 90:87–100

    Article  CAS  Google Scholar 

  • Heal OW (1963) Soil fungi as food for amoebae. Soil Org 289–297

    Google Scholar 

  • Henderson ME (1961) Isolation, identification and growth of some soil hyphomycetes and yeast-like fungi which utilize aromatic compounds related to lignin. Microbiology 26:149–154

    CAS  Google Scholar 

  • IUSS Working Group WRB (2014) World reference base for soil resources. World Soil Resources Report 105. The Food and Agriculture Organization of the United Nations (FAO), Rome 2015

    Google Scholar 

  • Jaiboon K, Lertwattanasakul N, Limtong P, Limtong S (2016) Yeasts from peat in a tropical peat swamp forest in Thailand and their ability to produce ethanol, indole-3-acetic acid and extracellular enzymes. Mycol Prog 15:755–770

    Article  Google Scholar 

  • Jensen V (1963) Studies on the microflora of Danish beech forest soils. IV. Yeasts and yeast-like fungi. Zentralbl Bakteriol Mikrobiol Hyg A 117:41–65

    Google Scholar 

  • Kimura Y, Nakano Y, Fujita K, Miyabe S, Imasaka S, Ishikawa Y, Sato M (1998) Isolation and characteristics of yeasts able to grow at low concentrations of nutrients. Yeast 14:233–238

    Article  CAS  PubMed  Google Scholar 

  • Kurtzman CP, Robnett CJ (1998) Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. A van Leeuwenhoek 73:331–371

    Article  CAS  Google Scholar 

  • Lachance MA, Starmer WT (1998) Ecology and yeasts. In: Kurtzman CP, Fell J, Boekhout T (eds) The yeasts, a taxonomic study, 4th edn. Elsevier, Amsterdam, pp 21–30

    Chapter  Google Scholar 

  • Lal R (2004) Soil carbon sequestration impacts on global climate change and food security. Science 304:1623–1627

    Article  CAS  PubMed  Google Scholar 

  • Landell MF, Brandão LR, Barbosa AC, Ramos JP, Safar SV, Gomes FC, Sousa FM, Morais PB, Broetto L, Leoncini O, Ribeiro JR, Fungsin B, Takashima M, Nakase T, Lee CF, Vainstein MH, Fell JW, Scorzetti G, Vishniac HS, Rosa CA, Valente P (2014) Hannaella pagnoccae sp. nov., a tremellaceous yeast species isolated from plants and soil. Int J Syst Evol Microbiol 64:1970–1977

    Article  PubMed  Google Scholar 

  • LaRue TA, Spencer JFT (1967) The utilization of imidazoles by yeasts. Can J Microbiol 13:789–794

    Article  CAS  PubMed  Google Scholar 

  • Lee JD, Komagata K (1980) Pichia cellobiosa, Candida cariosilignicola, and Candida succiphila, new species of methanol-assimilating yeasts. Int J Syst Evol Microbiol 30:514–519

    CAS  Google Scholar 

  • Limtong S, Yongmanitchai W, Tun MM, Kawasaki H, Seki T (2007) Kazachstania siamensis sp. nov., an ascomycetous yeast species from forest soil in Thailand. Int J Syst Evol Microbiol 57:419–422

    Article  PubMed  Google Scholar 

  • Limtong S, Yongmanitchai W, Kawasaki H, Fujiyama K (2009) Wickerhamomyces edaphicus sp. nov. and Pichia jaroonii sp. nov., two ascomycetous yeast species isolated from forest soil in Thailand. FEMS Yeast Res 9:504–510

    Article  CAS  PubMed  Google Scholar 

  • Liu XZ, Wang QM, Göker M, Groenewald M, Kachalkin AV, Lumbsch HT, Millanes AM, Wedin M, Yurkov AM, Boekhout T, Bai FY (2015) Towards an integrated phylogenetic classification of the Tremellomycetes. Stud Mycol 81:85–147

    Article  PubMed  Google Scholar 

  • Maksimova IA, Chernov IY (2004) Community structure of yeast fungi in forest biogeocenoses. Microbiology 73:474–481

    Article  CAS  Google Scholar 

  • Martin JP (1950) Use of acid, rose bengal, and streptomycin in the plate method for estimating soil fungi. Soil Sci 69:215–232

    Article  CAS  Google Scholar 

  • Mašínová T, Pontes A, Carvalho C, Sampaio JP, Baldrian P (2017a) Libkindia masarykiana gen. nov. et sp. nov., Yurkovia mendeliana gen. nov. et sp. nov., and Leucosporidium krtinense f.a. sp. nov., isolated from temperate forest soils. Int J Syst Evol Microbiol 67:902–908

    Article  PubMed  Google Scholar 

  • Mašínová T, Bahnmann BD, Větrovský T, Tomšovský M, Merunková K, Baldrian P (2017b) Drivers of yeast community composition in the litter and soil of a temperate forest. FEMS Microbiol Ecol 93:fiw223

    Article  PubMed  Google Scholar 

  • McColl RW (2014) Encyclopedia of world geography. Infobase Publishing

    Google Scholar 

  • Men’ko EV, Chernov IY, Byzov BA (2006) Interrelationships between yeast fungi and collembolans in soil. Microbiology 75:814–822

    Article  PubMed  CAS  Google Scholar 

  • Mestre MC, Rosa CA, Safar SV, Libkind D, Fontenla SB (2011) Yeast communities associated with the bulk-soil, rhizosphere and ectomycorrhizosphere of a Nothofagus pumilio forest in northwestern Patagonia, Argentina. FEMS Microbiol Ecol 78:531–541

    Article  CAS  PubMed  Google Scholar 

  • Middelhoven WJ (1993) Catabolism of benzene compounds by ascomycetous and basidiomycetous yeasts and yeast like fungi. A van Leeuwenhoek 63:125–144

    Article  CAS  Google Scholar 

  • Middelhoven WJ (2004) Trichosporon wieringae sp. nov., an anamorphic basidiomycetous yeast from soil, and assimilation of some phenolic compounds, polysaccharides and other non-conventional carbon sources by saprophytic Trichosporon species. A van Leeuwenhoek 86:329–337

    Article  CAS  Google Scholar 

  • Middelhoven WJ (2006) Polysaccharides and phenolic compounds as substrate for yeasts isolated from rotten wood and description of Cryptococcus fagi sp. nov. A van Leeuwenhoek 90:57–67

    Article  CAS  Google Scholar 

  • Middelhoven WJ, Kurtzman CP (2007) Four novel yeasts from decaying organic matter: Blastobotrys robertii sp. nov., Candida cretensis sp. nov., Candida scorzettiae sp. nov. and Candida vadensis sp. nov. A van Leeuwenhoek 92:233–244

    Article  Google Scholar 

  • Millanes AM, Diederich P, Ekman S, Wedin M (2011) Phylogeny and character evolution in the jelly fungi (Tremellomycetes, Basidiomycota, Fungi). Mol Phylogenet Evol 61:12–28

    Article  PubMed  Google Scholar 

  • Miller JJ, Webb NS (1954) Isolation of yeasts from soil with the aid of acid, Rose Bengal, and ox gall. Soil Sci 77:197–204

    Article  CAS  Google Scholar 

  • Miller MW, Phaff HJ, Snyder HE (1962) On the occurrence of various species of yeast in nature. Mycopathol Mycol Appl 16:1–18

    Article  CAS  Google Scholar 

  • Moawad H, Salem SH, El-Din SB, Khater T, Iskandar M (1986) Yeasts in soils of Egypt. Zentralbl Bakteriol Mikrobiol Hyg A 141:431–435

    Google Scholar 

  • Mok WY, Luizao RC, da Silva MDSB, Teixeira MF, Muniz EG (1984) Ecology of pathogenic yeasts in Amazonian soil. Appl Environ Microbiol 47:390–394

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ódor P, Heilmann-Clausen J, Christensen M, Aude E, Van Dort KW, Piltaver A, Siller I, Veerkamp MT, Walleyn R, Standovár T, Van Hees AF, Kosece J, Matočeci N, Kraigherh H, Grebench T (2006) Diversity of dead wood inhabiting fungi and bryophytes in semi-natural beech forests in Europe. Biol Conserv 131:58–71

    Article  Google Scholar 

  • Olson DM, Dinerstein E (1998) The Global 200: a representation approach to conserving the Earth’s most biologically valuable ecoregions. Conserv Biol 12:502–515

    Article  Google Scholar 

  • Pan Y, Birdsey RA, Phillips OL, Jackson RB (2013) The structure, distribution, and biomass of the world’s forests. Annu Rev Ecol Evol Syst 44:593–622

    Article  Google Scholar 

  • Parker SS (2010) Buried treasure: soil biodiversity and conservation. Biodivers Conserv 19:3743–3756

    Article  Google Scholar 

  • Péter G, Tornai-Lehoczki J, Fülöp L, Dlauchy D (2003) Six new methanol assimilating yeast species from wood material. A van Leeuwenhoek 84:147–159

    Article  Google Scholar 

  • Phaff HJ, Starmer WT (1987) Yeasts associated with plants, insects and soil. In: Rose H, Harrison JS (eds) The yeasts, vol vol. 1. Academic Press, London, pp 123–180

    Google Scholar 

  • Pontes A, Röhl O, Carvalho C, Maldonado C, Yurkov AM, Sampaio JP (2016) Cystofilobasidium intermedium sp. nov. and Cystofilobasidium alribaticum f.a. sp. nov., isolated from Mediterranean forest soils. Int J Syst Evol Microbiol 66(2):1058–1062

    Article  CAS  Google Scholar 

  • Raspor P, Zupan J (2006) Yeasts in extreme environments. In: Rosa C, Peter G (eds) Biodiversity and ecophysiology of yeasts. Springer, Berlin, pp 371–417

    Chapter  Google Scholar 

  • Reich PB, Hobbie SE, Lee T, Ellsworth DS, West JB, Tilman D, Knops JM, Naeem S, Trost J (2006) Nitrogen limitation constrains sustainability of ecosystem response to CO2. Nature 440:922–925

    Article  CAS  PubMed  Google Scholar 

  • Rohli RV, Joyner TA, Reynolds SJ, Ballinger TJ (2015) Overlap of global Köppen–Geiger climates, biomes, and soil orders. Phys Geogr 36:158–175

    Article  Google Scholar 

  • Sampaio JP (1999) Utilization of low molecular weight aromatic compounds by heterobasidiomycetous yeasts: taxonomic implications. Can J Microbiol 45:491–512

    Article  CAS  PubMed  Google Scholar 

  • Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W, Fungal Barcoding Consortium (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci U S A 109:6241–6246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scorzetti G, Fell JW, Fonseca A, Statzell-Tallman A (2002) Systematics of basidiomycetous yeasts: a comparison of large subunit D1/D2 and internal transcribed spacer rDNA regions. FEMS Yeast Res 2:495–517

    Article  CAS  PubMed  Google Scholar 

  • Sláviková E, Vadkertiová R (2000) The occurrence of yeasts in the forest soils. J Basic Microbiol 40:207–212

    Article  PubMed  Google Scholar 

  • Spencer JFT, Spencer DM (1997) Ecology: where yeasts live. In: Spencer JFT, Spencer DM (eds) Yeasts in natural and artificial habitats. Springer, Berlin, pp 33–58

    Chapter  Google Scholar 

  • Starkey RL, Henrici AT (1927) The occurrence of yeasts in soil. Soil Sci 23:33–46

    Article  CAS  Google Scholar 

  • Starmer WT, Lachance MA (2011) Yeast ecology. In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts: a taxonomic study, vol vol. 1. Elsevier, Amsterdam, pp 65–83

    Chapter  Google Scholar 

  • Summerbell RC (1988) Benomyl-tolerant microfungi associated with mycorrhizae of black spruce. Can J Bot 66:553–557

    Article  CAS  Google Scholar 

  • Sylvester K, Wang QM, James B, Mendez R, Hulfachor AB, Hittinger CT (2015) Temperature and host preferences drive the diversification of Saccharomyces and other yeasts: a survey and the discovery of eight new yeast species. FEMS Yeast Res 15:fov002

    Google Scholar 

  • Takashima M, Sugita T, Van BH, Nakamura M, Endoh R, Ohkuma M (2012) Taxonomic richness of yeasts in Japan within subtropical and cool temperate areas. PLoS One 7:e50784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thorn RG, Reddy CA, Harris D, Paul EA (1996) Isolation of saprophytic basidiomycetes from soil. Appl Environ Microbiol 62:4288–4292

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tollefson J (2016) Deforestation spikes in Brazilian Amazon. Nature 540:182

    Google Scholar 

  • Tomme P, Warren RAJ, Gilkes NR (1995) Cellulose hydrolysis by bacteria and fungi. Adv Microb Physiol 37:1–81

    Article  CAS  PubMed  Google Scholar 

  • Turchetti B, Buzzini P, Goretti M, Branda E, Diolaiuti G, D’Agata C, Smiraglia C, Vaughan-Martini A (2008) Psychrophilic yeasts in glacial environments of Alpine glaciers. FEMS Microbiol Ecol 63:73–83

    Article  CAS  PubMed  Google Scholar 

  • UN ESA (2006) National trends in population, resources, environment and development 2005: country profiles. Department of Economic and Social Affairs of the United Nations, New York

    Google Scholar 

  • Urbanová M, Šnajdr J, Baldrian P (2015) Composition of fungal and bacterial communities in forest litter and soil is largely determined by dominant trees. Soil Biol Biochem 84:53–64

    Article  CAS  Google Scholar 

  • van der Heijden MG, Bardgett RD, Van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310

    Article  PubMed  Google Scholar 

  • van der Walt JP (1992) The Lipomycetaceae, a model family for phylogenetic studies. A van Leeuwenhoek 62:247–250

    Article  Google Scholar 

  • Vinovarova ME, Babjeva IP (1987) Yeast fungi in steppe communities. Vestn Mosk Univ Ser Pochvoved 2:43–48 (in Russian)

    Google Scholar 

  • Vishniac HS (1983) An enation system for the isolation of Antarctic yeasts inhibited by conventional media. Can J Microbiol 29:90–95

    Article  Google Scholar 

  • Vishniac HS (1995) Simulated in situ competitive ability and survival of a representative soil yeast, Cryptococcus albidus. Microb Ecol 30:309–320

    Article  CAS  PubMed  Google Scholar 

  • Vishniac HS (2006) A multivariate analysis of soil yeasts isolated from a latitudinal gradient. Microb Ecol 52:90–103

    Article  PubMed  Google Scholar 

  • Vital MJS, Abranches J, Hagler AN, Mendonça-Hagler LC (2002) Mycocinogenic yeasts isolated from Amazon soils of the Maracá ecological station, Roraima-Brazil. Braz J Microbiol 33:230–235

    Article  Google Scholar 

  • Voříšková J, Baldrian P (2013) Fungal community on decomposing leaf litter undergoes rapid successional changes. ISME J 7:477–486

    Article  PubMed  CAS  Google Scholar 

  • Wardle DA, Bardgett RD, Klironomos JN, Setälä H, Van Der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science 304:1629–1633

    Article  CAS  PubMed  Google Scholar 

  • Wehde T (2011) Untersuchungen zur saisonalen Dynamik der Biodiversität von bodenassoziierten Hefen im Natur-und Nutzwald. Diploma Thesis. Ruhr-University Bochum

    Google Scholar 

  • Wuczkowski M, Prillinger H (2004) Molecular identification of yeasts from soils of the alluvial forest national park along the river Danube downstream of Vienna, Austria (“National park Donauauen”). Microbiol Res 159:263–275

    Article  CAS  PubMed  Google Scholar 

  • Wuczkowski M, Metzger E, Sterflinger K, Prillinger H (2005) Diversity of yeasts isolated from litter and soil of different natural forest sites in Austria. Bodenkultur 56:201–208

    CAS  Google Scholar 

  • Yurkov AM, Chernov IY, Tiunov AV (2008) Influence of Lumbricus terrestris earthworms on the structure of the yeast community of forest litter. Microbiology 77:107–111

    Article  CAS  Google Scholar 

  • Yurkov AM, Kemler M, Begerow D (2011) Species accumulation curves and incidence-based species richness estimators to appraise the diversity of cultivable yeasts from beech forest soils. PLoS One 6:e23671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yurkov AM, Kemler M, Begerow D (2012a) Assessment of yeast diversity in soils under different management regimes. Fungal Ecol 5:24–35

    Article  Google Scholar 

  • Yurkov A, Wehde T, Kahl T, Begerow D (2012b) Aboveground deadwood deposition supports development of soil yeasts. Diversity 4:453–474

    Article  Google Scholar 

  • Yurkov A, Inácio J, Chernov IY, Fonseca A (2015) Yeast biogeography and the effects of species recognition approaches: the case study of widespread basidiomycetous species from birch forests in Russia. Curr Microbiol 70:587–601

    Article  CAS  PubMed  Google Scholar 

  • Yurkov AM, Röhl O, Pontes A, Carvalho C, Maldonado C, Sampaio JP (2016a) Local climatic conditions constrain soil yeast diversity patterns in Mediterranean forests, woodlands and scrub biome. FEMS Yeast Res 16:fov103

    Google Scholar 

  • Yurkov AM, Wehde T, Federici J, Schäfer AM, Ebinghaus M, Lotze-Engelhard S, Mittelbach M, Prior R, Richter C, Röhl O, Begerow D (2016b) Yeast diversity and species recovery rates from beech forest soils. Mycol Prog 15:845–859

    Article  Google Scholar 

Download references

Acknowledgements

I am grateful to all people who taught me soil science, microbiology, yeast ecology and systematics. I owe much of my knowledge to Inna Babjeva, Ivan Chernov, Álvaro Fonseca and the teachers of the van Uden International Advanced Course on Molecular Ecology, Taxonomy and Identification of Yeasts. I would like to thank colleagues and project students from the Lomonosov Moscow State University, Ruhr-University Bochum and Universidade Nova de Lisboa for their assistance during the projects on soil yeasts. Aleksey Kachalkin, Tereza Mašínová and Petr Baldrian are acknowledged for sharing unpublished data, and Cletus P. Kurtzman is acknowledged for correcting the English text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey Yurkov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Yurkov, A. (2017). Yeasts in Forest Soils. In: Buzzini, P., Lachance, MA., Yurkov, A. (eds) Yeasts in Natural Ecosystems: Diversity. Springer, Cham. https://doi.org/10.1007/978-3-319-62683-3_3

Download citation

Publish with us

Policies and ethics