Skip to main content

SWRL Rule Development to Automate Spatial Transactions in Government

  • Conference paper
  • First Online:
Book cover Geographical Information Systems Theory, Applications and Management (GISTAM 2016)

Abstract

The land development approval process between local councils and government planning authorities is time consuming and resource intensive because human decision-making is required to complete a transaction. This is particularly apparent when seeking approval for a new land subdivisions and administrative boundary changes that require changes to spatial datasets. This paper presents a methodology that automates the approval process by developing. Feedback on the transaction is communicated to the land developer in real-time, thus reducing process handling time for both developer and the government agency. This paper presents an approach for knowledge acquisition on rule development using Semantic Web and Artificial Intelligence to automate the spatial transaction process. The Web Ontology Language (OWL) is used to represent relationships between different entities in the spatial database schema. Rules that replicate human knowledge are extracted from government policy documents and subject-matter experts, and are defined in the form of Semantic Web Rule Language (SWRL) and based on geometry and attributes of database entities. The SWRL rules work with OWL-2 (spatial schema and vocabulary) ontologies to enable the automatic transactions to occur. These rules are implemented using an ontology and rule reasoner, which accesses the instances of data elements stored in the underlying spatial database. When the developer submits an application, the software checks the rules against the request for compliance with the relevant government policies and standards. This paper presents results for dealing with road proposals and road name approvals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Varadharajulu, P., Saqiq, M.A., Yu, F., McMeekin, D.A., West, G., Arnold, L., Moncrieff, S.: Spatial data supply chains. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 40(4), 41 (2015)

    Article  Google Scholar 

  2. Lee, B.T., Fischetti, M.: Weaving the web: the original design and ultimate destiny of the world wide web by its inventor (1999)

    Google Scholar 

  3. Gupta, S., Knoblock, C.A.: A framework for integrating and reasoning about geospatial data. In: Extended Abstracts of the Sixth International Conference on Geographic Information Science (GIScience) (2010)

    Google Scholar 

  4. McMeekin, D.A., West, G.: Spatial data infrastructures and the semantic web of spatial things in Australia: research opportunities in SDI and the semantic web. In: 2012 5th International Conference on Human System Interactions (HSI), pp. 197–201. IEEE (2012)

    Google Scholar 

  5. Shadbolt, N., Berners-Lee, T., Hall, W.: The semantic web revisited. IEEE Intell. Syst. 21(3), 96–101 (2006)

    Article  Google Scholar 

  6. Millard, E.: The semantic web could enable even greater access to information. Promise of a better Internet. Teradata Mag. online (2010)

    Google Scholar 

  7. Devaraju, A., Kuhn, W., Renschler, C.S.: A formal model to infer geographic events from sensor observations. Int. J. Geogr. Inf. Sci. 29(1), 1–27 (2015)

    Article  Google Scholar 

  8. Yu, L., Liu, Y.: Using linked data in a heterogeneous sensor web: challenges, experiments and lessons learned. Int. J. Digit. Earth 8(1), 17–37 (2015)

    Article  Google Scholar 

  9. Reitsma, F.E.: A new geographic process data model. Ph.D. thesis (2005)

    Google Scholar 

  10. O’Connor, M., Knublauch, H., Tu, S., Grosof, B., Dean, M., Grosso, W., Musen, M.: Supporting rule system interoperability on the semantic web with SWRL. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 974–986. Springer, Heidelberg (2005). doi:10.1007/11574620_69

    Chapter  Google Scholar 

  11. Segaran, T., Evans, C., Taylor, J., Toby, S., Colin, E., Jamie, T.: Programming the Semantic Web. O’Reilly Media Inc., Sebastopol (2009)

    Google Scholar 

  12. Hazaël-Massieux, D.: The semantic web and its applications. In: World Wide Web Consortium, SIMO - The Semantic Web and its applications, November 2003

    Google Scholar 

  13. Gruber, T.R.: Toward principles for the design of ontologies used for knowledge sharing? Int. J. Hum. Comput. Stud. 43(5–6), 907–928 (1995)

    Article  Google Scholar 

  14. Noy, N.F., McGuinness, D.L., et al.: Ontology development 101: a guide to creating your first ontology (2001)

    Google Scholar 

  15. Bergman, M.: An intrepid guide to ontologies. ai3::: Adaptive information (2007)

    Google Scholar 

  16. Ghawi, R., Cullot, N.: Building ontologies from multiple information sources. In: 15th Conference on Information and Software Technologies (IT2009), Kaunas (2009)

    Google Scholar 

  17. Powell, J.: A Librarian’s Guide to Graphs, Data and the Semantic Web. Elsevier, Waltham (2015)

    Google Scholar 

  18. Broekstra, J., Kampman, A., Harmelen, F.: Sesame: a generic architecture for storing and querying RDF and RDF schema. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342, pp. 54–68. Springer, Heidelberg (2002). doi:10.1007/3-540-48005-6_7

    Chapter  Google Scholar 

  19. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rodriguez-Muro, M., Rosati, R., Ruzzi, M., Savo, D.F.: The mastro system for ontology-based data access. Semant. Web 2(1), 43–53 (2011)

    Google Scholar 

  20. Poggi, A., Rodriguez, M., Ruzzi, M.: Ontology-based database access with DIG-Mastro and the OBDA Plugin for Protégé. In: Proceedings of the 4th International Workshop on OWL: Experiences and Directions (OWLED 2008 DC), vol. 496 (2008)

    Google Scholar 

  21. Savo, D.F., Lembo, D., Lenzerini, M., Poggi, A., Rodrıguez-Muro, M., Romagnoli, V., Ruzzi, M., Stella, G.: Mastro at work: experiences on ontology-based data access. In: Proceedings of DL, vol. 573, pp. 20–31 (2010)

    Google Scholar 

  22. Rodriguez-Muro, M., Lubyte, L., Calvanese, D.: Realizing ontology based data access: a plug-in for Protégé. In: IEEE 24th International Conference on Data Engineering Workshop, 2008 (ICDEW 2008), pp. 286–289. IEEE (2008)

    Google Scholar 

  23. Zhang, Y., Chiang, Y.-Y., Szekely, P., Knoblock, C.A.: A semantic approach to retrieving, linking, and integrating heterogeneous geospatial data. In: Joint Proceedings of the Workshop on AI Problems and Approaches for Intelligent Environments and Workshop on Semantic Cities, pp. 31–37. ACM (2013)

    Google Scholar 

  24. Patroumpas, K., Alexakis, M., Giannopoulos, G., Athanasiou, S.: TripleGeo: an ETL tool for transforming geospatial data into RDF triples. In: EDBT/ICDT Workshops, pp. 275–278 (2014)

    Google Scholar 

Download references

Acknowledgement

The work has been supported by the Cooperative Research Centre for Spatial Information, whose activities are funded by the Australian Commonwealth’s Cooperative Research Centres Programme. The authors extend their thanks to Landgate for providing the example datasets for the case study and subject matter experts for rule formulation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Premalatha Varadharajulu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Varadharajulu, P., Arnold, L., McMeekin, D.A., West, G., Moncrieff, S. (2017). SWRL Rule Development to Automate Spatial Transactions in Government. In: Grueau, C., Laurini, R., Rocha, J. (eds) Geographical Information Systems Theory, Applications and Management. GISTAM 2016. Communications in Computer and Information Science, vol 741. Springer, Cham. https://doi.org/10.1007/978-3-319-62618-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62618-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62617-8

  • Online ISBN: 978-3-319-62618-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics