SWRL Rule Development to Automate Spatial Transactions in Government

  • Premalatha VaradharajuluEmail author
  • Lesley Arnold
  • David A. McMeekin
  • Geoff West
  • Simon Moncrieff
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 741)


The land development approval process between local councils and government planning authorities is time consuming and resource intensive because human decision-making is required to complete a transaction. This is particularly apparent when seeking approval for a new land subdivisions and administrative boundary changes that require changes to spatial datasets. This paper presents a methodology that automates the approval process by developing. Feedback on the transaction is communicated to the land developer in real-time, thus reducing process handling time for both developer and the government agency. This paper presents an approach for knowledge acquisition on rule development using Semantic Web and Artificial Intelligence to automate the spatial transaction process. The Web Ontology Language (OWL) is used to represent relationships between different entities in the spatial database schema. Rules that replicate human knowledge are extracted from government policy documents and subject-matter experts, and are defined in the form of Semantic Web Rule Language (SWRL) and based on geometry and attributes of database entities. The SWRL rules work with OWL-2 (spatial schema and vocabulary) ontologies to enable the automatic transactions to occur. These rules are implemented using an ontology and rule reasoner, which accesses the instances of data elements stored in the underlying spatial database. When the developer submits an application, the software checks the rules against the request for compliance with the relevant government policies and standards. This paper presents results for dealing with road proposals and road name approvals.


Spatial transaction Spatial data supply chain Artificial intelligence Semantic Web Ontology Rule-based reasoning OWL-2 



The work has been supported by the Cooperative Research Centre for Spatial Information, whose activities are funded by the Australian Commonwealth’s Cooperative Research Centres Programme. The authors extend their thanks to Landgate for providing the example datasets for the case study and subject matter experts for rule formulation.


  1. 1.
    Varadharajulu, P., Saqiq, M.A., Yu, F., McMeekin, D.A., West, G., Arnold, L., Moncrieff, S.: Spatial data supply chains. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 40(4), 41 (2015)CrossRefGoogle Scholar
  2. 2.
    Lee, B.T., Fischetti, M.: Weaving the web: the original design and ultimate destiny of the world wide web by its inventor (1999)Google Scholar
  3. 3.
    Gupta, S., Knoblock, C.A.: A framework for integrating and reasoning about geospatial data. In: Extended Abstracts of the Sixth International Conference on Geographic Information Science (GIScience) (2010)Google Scholar
  4. 4.
    McMeekin, D.A., West, G.: Spatial data infrastructures and the semantic web of spatial things in Australia: research opportunities in SDI and the semantic web. In: 2012 5th International Conference on Human System Interactions (HSI), pp. 197–201. IEEE (2012)Google Scholar
  5. 5.
    Shadbolt, N., Berners-Lee, T., Hall, W.: The semantic web revisited. IEEE Intell. Syst. 21(3), 96–101 (2006)CrossRefGoogle Scholar
  6. 6.
    Millard, E.: The semantic web could enable even greater access to information. Promise of a better Internet. Teradata Mag. online (2010)Google Scholar
  7. 7.
    Devaraju, A., Kuhn, W., Renschler, C.S.: A formal model to infer geographic events from sensor observations. Int. J. Geogr. Inf. Sci. 29(1), 1–27 (2015)CrossRefGoogle Scholar
  8. 8.
    Yu, L., Liu, Y.: Using linked data in a heterogeneous sensor web: challenges, experiments and lessons learned. Int. J. Digit. Earth 8(1), 17–37 (2015)CrossRefGoogle Scholar
  9. 9.
    Reitsma, F.E.: A new geographic process data model. Ph.D. thesis (2005)Google Scholar
  10. 10.
    O’Connor, M., Knublauch, H., Tu, S., Grosof, B., Dean, M., Grosso, W., Musen, M.: Supporting rule system interoperability on the semantic web with SWRL. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 974–986. Springer, Heidelberg (2005). doi: 10.1007/11574620_69 CrossRefGoogle Scholar
  11. 11.
    Segaran, T., Evans, C., Taylor, J., Toby, S., Colin, E., Jamie, T.: Programming the Semantic Web. O’Reilly Media Inc., Sebastopol (2009)Google Scholar
  12. 12.
    Hazaël-Massieux, D.: The semantic web and its applications. In: World Wide Web Consortium, SIMO - The Semantic Web and its applications, November 2003Google Scholar
  13. 13.
    Gruber, T.R.: Toward principles for the design of ontologies used for knowledge sharing? Int. J. Hum. Comput. Stud. 43(5–6), 907–928 (1995)CrossRefGoogle Scholar
  14. 14.
    Noy, N.F., McGuinness, D.L., et al.: Ontology development 101: a guide to creating your first ontology (2001)Google Scholar
  15. 15.
    Bergman, M.: An intrepid guide to ontologies. ai3::: Adaptive information (2007)Google Scholar
  16. 16.
    Ghawi, R., Cullot, N.: Building ontologies from multiple information sources. In: 15th Conference on Information and Software Technologies (IT2009), Kaunas (2009)Google Scholar
  17. 17.
    Powell, J.: A Librarian’s Guide to Graphs, Data and the Semantic Web. Elsevier, Waltham (2015)Google Scholar
  18. 18.
    Broekstra, J., Kampman, A., Harmelen, F.: Sesame: a generic architecture for storing and querying RDF and RDF schema. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342, pp. 54–68. Springer, Heidelberg (2002). doi: 10.1007/3-540-48005-6_7 CrossRefGoogle Scholar
  19. 19.
    Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rodriguez-Muro, M., Rosati, R., Ruzzi, M., Savo, D.F.: The mastro system for ontology-based data access. Semant. Web 2(1), 43–53 (2011)Google Scholar
  20. 20.
    Poggi, A., Rodriguez, M., Ruzzi, M.: Ontology-based database access with DIG-Mastro and the OBDA Plugin for Protégé. In: Proceedings of the 4th International Workshop on OWL: Experiences and Directions (OWLED 2008 DC), vol. 496 (2008)Google Scholar
  21. 21.
    Savo, D.F., Lembo, D., Lenzerini, M., Poggi, A., Rodrıguez-Muro, M., Romagnoli, V., Ruzzi, M., Stella, G.: Mastro at work: experiences on ontology-based data access. In: Proceedings of DL, vol. 573, pp. 20–31 (2010)Google Scholar
  22. 22.
    Rodriguez-Muro, M., Lubyte, L., Calvanese, D.: Realizing ontology based data access: a plug-in for Protégé. In: IEEE 24th International Conference on Data Engineering Workshop, 2008 (ICDEW 2008), pp. 286–289. IEEE (2008)Google Scholar
  23. 23.
    Zhang, Y., Chiang, Y.-Y., Szekely, P., Knoblock, C.A.: A semantic approach to retrieving, linking, and integrating heterogeneous geospatial data. In: Joint Proceedings of the Workshop on AI Problems and Approaches for Intelligent Environments and Workshop on Semantic Cities, pp. 31–37. ACM (2013)Google Scholar
  24. 24.
    Patroumpas, K., Alexakis, M., Giannopoulos, G., Athanasiou, S.: TripleGeo: an ETL tool for transforming geospatial data into RDF triples. In: EDBT/ICDT Workshops, pp. 275–278 (2014)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Premalatha Varadharajulu
    • 1
    • 2
    Email author
  • Lesley Arnold
    • 1
    • 2
  • David A. McMeekin
    • 1
    • 2
  • Geoff West
    • 1
    • 2
  • Simon Moncrieff
    • 1
    • 2
  1. 1.Curtin UniversityPerthAustralia
  2. 2.Cooperative Research Centre for Spatial InformationCarltonAustralia

Personalised recommendations