Advertisement

Automated Walkable Area Segmentation from Aerial Images for Evacuation Simulation

  • Fabian SchenkEmail author
  • Matthias Rüther
  • Horst Bischof
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 741)

Abstract

In this paper, we propose a novel, efficient and fast method to extract the walkable area from high-resolution aerial images for the purpose of computer-aided evacuation simulation for major public events. Compared to previous work, where authors only extracted roads and streets or solely focused on indoor scenarios, we present an approach to fully segment the walkable area of large outdoor environments. We address this challenge by modeling human movements in the terrain with a sophisticated seeded region growing algorithm (SRG), which utilizes digital surface models, true-orthophotos and inclination maps computed from aerial images. Further, we propose a novel annotation and scoring scheme especially developed for assessing the quality of the extracted evacuation maps. Finally, we present an extensive quantitative and qualitative evaluation, where we show the feasibility of our approach by evaluating different combinations of SRG methods and parameter settings on several real-world scenarios.

Keywords

Aerial images Walkable area Seeded region growing Evacuation maps Accessibility 

Notes

Acknowledgements

This work was financed by the KIRAS program (no 840858, AIRPLAN) under supervision of the Austrian Research Promotion Agency (FFG) and in cooperation with the Austrian Ministry for Traffic, Innovation and Technology (BMVIT).

References

  1. 1.
    Helbing, D., Mukerji, P.: Crowd disasters as systemic failures: analysis of the love parade disaster. EPJ Data Sci. 1, 1–40 (2012)CrossRefGoogle Scholar
  2. 2.
    Krausz, B., Bauckhage, C.: Loveparade 2010: automatic video analysis of a crowd disaster. Comput. Vis. Image Underst. 116, 307–319 (2012)CrossRefGoogle Scholar
  3. 3.
    Hsu, E.B., Burkle, F.M.: Cambodian bon om touk stampede highlights preventable tragedy. Prehospital Disaster Med. 27, 481–482 (2012)CrossRefGoogle Scholar
  4. 4.
    Taubenböck, H., Post, J., Kiefl, R., Roth, A., Ismail, F.A., Strunz, G., Dech, S.: Risk and vulnerability assessment to tsunami hazard using very high resolution satellite data: the case study of padang, indonesia. EARSeL eProceeding 8, 53–63 (2009)Google Scholar
  5. 5.
    Lämmel, G., Grether, D., Nagel, K.: The representation and implementation of time-dependent inundation in large-scale microscopic evacuation simulations. Transp. Res. Part C Emerg. Technol. 18, 84–98 (2010)CrossRefGoogle Scholar
  6. 6.
    Schenk, F., Rüther, M., Bischof, H.: Automated segmentation of the walkable area from aerial images for evacuation simulation. In: Proceedings of the 2nd International Conference on Geographical Information Systems Theory, Applications and Management, pp. 125–135 (2016)Google Scholar
  7. 7.
    Galea, E.R.: Simulating evacuation and circulation in planes, trains, buildings and ships using the exodus software. In: Pedestrian and Evacuation Dynamics, pp. 203–225. Springer (2002)Google Scholar
  8. 8.
    Klüpfel, H.: The simulation of crowds at very large events. In: Schadschneider A., Pöschel, T., Kühne, R., Schreckenberg, M., Wolf, D.E. (eds) Traffic and Granular Flow 2005. Springer, Heidelberg (2007)Google Scholar
  9. 9.
    Tsai, J., Fridman, N., Bowring, E., Brown, M., Epstein, S., Kaminka, G., Marsella, S., Ogden, A., Rika, I., Sheel, A., et al.: Escapes: evacuation simulation with children, authorities, parents, emotions, and social comparison. In: AAMAS, pp. 457–464 (2011)Google Scholar
  10. 10.
    Schneider, V., Könnecke, R.: Simulating evacuation processes with aseri. In: Pedestrian and Evacuation Dynamics, pp. 301–313 (2001)Google Scholar
  11. 11.
    Johnson, C.W.: Olympic venues. Safety Sci. 46(2008), 302–322 (2012)Google Scholar
  12. 12.
    Shi, C., Zhong, M., Nong, X., He, L., Shi, J., Feng, G.: Modeling and safety strategy of passenger evacuation in a metro station in China. Safety Sci. 50, 1319–1332 (2012)CrossRefGoogle Scholar
  13. 13.
    Tang, F., Ren, A.: GIS-based 3d evacuation simulation for indoor fire. Build. Environ. 49, 193–202 (2012)CrossRefGoogle Scholar
  14. 14.
    Mas, E., Adriano, B., Koshimura, S.: An integrated simulation of tsunami hazard and human evacuation in la punta, peru. J. Disaster Res. 8, 285–295 (2013)CrossRefGoogle Scholar
  15. 15.
    Koch, D.B., Payne, P.W.: An incident management preparedness and coordination toolkit. In: Global Humanitarian Technology Conference (GHTC), pp. 31–35. IEEE (2012)Google Scholar
  16. 16.
    Dal Poz, A.P., Gallis, R.A., da Silva, J.F., Martins, É.F.: Object-space road extraction in rural areas using stereoscopic aerial images. IEEE Geosci. Remote Sens. Lett. 9, 654–658 (2012)CrossRefGoogle Scholar
  17. 17.
    Hu, J., Razdan, A., Femiani, J.C., Cui, M., Wonka, P.: Road network extraction and intersection detection from aerial images by tracking road footprints. IEEE Trans. Geosci. Remote Sens. 45, 4144–4157 (2007)CrossRefGoogle Scholar
  18. 18.
    Lin, Y., Saripalli, S.: Road detection and tracking from aerial desert imagery. J. Intell. Robot. Syst. 65, 345–359 (2012)CrossRefGoogle Scholar
  19. 19.
    Zhou, H., Kong, H., Wei, L., Creighton, D., Nahavandi, S.: Efficient road detection and tracking for unmanned aerial vehicle. IEEE Trans. Intell. Transp. Syst. 16, 297–309 (2015)CrossRefGoogle Scholar
  20. 20.
    Cheriyadat, A.M.: Unsupervised feature learning for aerial scene classification. IEEE Trans. Geosci. Remote Sens. 52, 439–451 (2014)CrossRefGoogle Scholar
  21. 21.
    Huth, J., Kuenzer, C., Wehrmann, T., Gebhardt, S., Tuan, V.Q., Dech, S.: Land cover and land use classification with twopac: towards automated processing for pixel-and object-based image classification. Remote Sens. 4, 2530–2553 (2012)CrossRefGoogle Scholar
  22. 22.
    Han, J., Zhang, D., Cheng, G., Guo, L., Ren, J.: Object detection in optical remote sensing images based on weakly supervised learning and high-level feature learning. Trans. Geosci. Remote Sens. 53, 3325–3337 (2015)CrossRefGoogle Scholar
  23. 23.
    Adams, R., Bischof, L.: Seeded region growing. IEEE Trans. Pattern Anal. Mach. Intell. 16, 641–647 (1994)CrossRefGoogle Scholar
  24. 24.
    Irschara, A., Rumpler, M., Meixner, P., Pock, T., Bischof, H.: Efficient and globally optimal multi view dense matching for aerial images. ISPRS Ann. Photogrammetry Remote Sens. Spatial Inf. Sci. 1, 227–232 (2012)CrossRefGoogle Scholar
  25. 25.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60, 91–110 (2004)CrossRefGoogle Scholar
  26. 26.
    Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24, 381–395 (1981)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W.: Bundle adjustment — a modern synthesis. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) IWVA 1999. LNCS, vol. 1883, pp. 298–372. Springer, Heidelberg (2000). doi: 10.1007/3-540-44480-7_21 CrossRefGoogle Scholar
  28. 28.
    Rumpler, M., Wendel, A., Bischof, H.: Probabilistic range image integration for DSM and true-orthophoto generation. In: Kämäräinen, J.-K., Koskela, M. (eds.) SCIA 2013. LNCS, vol. 7944, pp. 533–544. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-38886-6_50 CrossRefGoogle Scholar
  29. 29.
    Collins, R.T.: A space-sweep approach to true multi-image matching. In: Computer Vision and Pattern Recognition, pp. 358–363. IEEE (1996)Google Scholar
  30. 30.
    Holz, D., Holzer, S., Rusu, R.B., Behnke, S.: Real-time plane segmentation using RGB-D cameras. In: Röfer, T., Mayer, N.M., Savage, J., Saranlı, U. (eds.) RoboCup 2011. LNCS, vol. 7416, pp. 306–317. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-32060-6_26 CrossRefGoogle Scholar
  31. 31.
    Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D Nonlinear Phenom. 60, 259–268 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imag. Vis. 40, 120–145 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26, 297–302 (1945)CrossRefGoogle Scholar
  34. 34.
    Jaccard, P.: Nouvelles recherches sur la distribution florale (1908)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Fabian Schenk
    • 1
    Email author
  • Matthias Rüther
    • 1
  • Horst Bischof
    • 1
  1. 1.Institute for Computer Graphics and VisionGraz University of TechnologyGrazAustria

Personalised recommendations