Investigation of Geospatially Enabled, Social Media Generated Structure Occupancy Curves in Commercial Structures

  • Samuel Lee ToepkeEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 741)


Spatiotemporal human-use estimations, via occupancy curves of a high-traffic commercial structure, have been shown to be attainable using publicly available social media data. The data is crowd sourced, geospatially enabled, and gathered from open web services using a commercially available, enterprise cloud architecture. After data processing, an interested individual can view a graph displaying population over a twenty four hour period for a specific building, with this work focusing on several structures in downtown San Jose, CA, USA. New structure data is explored to bolster previous findings, structure curves are compared to Google Popular Times charts, and further discussion includes limitations of this method and the benefit of error estimation.


Population estimation Structure occupancy curve Social media Geofencing Enterprise architecture Volunteered geographic data 


  1. 1.
    About — Children’s Discovery Museum of San Jose. Accessed 3 Jul 2016
  2. 2.
    Aubrecht, C., Ungar, J., Freire, S.: Exploring the potential of volunteered geographic information for modeling spatio-temporal characteristics of urban population: a case study for Lisbon Metro using foursquare check-in data. In: International Conference Virtual City and Territory, Lisboa, vol. 7, pp. 57–60 (2011)Google Scholar
  3. 3.
    Batista e Silva, P., Martens, L.: Population estimation for the urban atlas polygons. Report no. EUR 26437 EN. European Commission, Joint Research Center, Ispra, Italy (2013). Print ISBN 978-92-79-35089-4Google Scholar
  4. 4.
    Bhaduri, B., et al.: LandScan USA: a high-resolution geospatial and temporal modeling approach for population distribution and dynamics. GeoJournal 69(1–2), 103–117 (2007)CrossRefGoogle Scholar
  5. 5.
    Center for the Performing Arts - San Jose Theaters. Accessed 3 July 2016
  6. 6.
    Convention Center — San Jose - Innovation Starts Here — Team San Jose 2015. Accessed 19 Sept 2015
  7. 7.
    Dong, B., Andrews, B.: Sensor-based occupancy behavioral pattern recognition for energy and comfort management in intelligent buildings. In: Proceedings of Building Simulation, pp. 1444–1451 (2009)Google Scholar
  8. 8.
    EPSG: 3857 - OpenStreetMap Wiki (2015). Accessed 19 Sept 2015
  9. 9.
    Event Center Arena - Wikipedia, the free encyclopedia. Accessed 19 Sept 2015
  10. 10.
    Freire, S., Florczyk, A., Ferri, S.: Modeling day-and nighttime population exposure at high resolution: Application to volcanic risk assessment in Campi Flegrei. In: 12th International Conference on Information Systems for Crisis Response and Management (2015)Google Scholar
  11. 11.
    Freire, S., Florczyk, A., Pesaresi, M.: New multi-temporal global population GridsApplication to Volcanism. In: 13th International Conference on Information Systems for Crisis Response and Management (2016)Google Scholar
  12. 12.
    Fuchs, G., Andrienko, N., Andrienko, G., Bothe, S., Stange, H.: Tracing the German centennial flood in the stream of tweets: first lessons learned. In: Proceedings of the Second ACM SIGSPATIAL International Workshop on Crowdsourced and Volunteered Geographic Information, pp. 31–38 (2013)Google Scholar
  13. 13.
    GNIP Representative: Re: Twitter Data Discussion. Message to the author. E-mail (2015)Google Scholar
  14. 14.
    GNIP - The World’s Largest, Most Trusted Provider of Social Data: The Source for Social Data. Accessed 17 Oct 2015Google Scholar
  15. 15.
    Google App Engine: Platform as a Service - App Engine Google Cloud Platform. Accessed 19 Sept 2015
  16. 16.
    Grimes, J.G: Global Positioning System Standard Positioning Service Performance Standard. GPS Navster Department of Defense (2008)Google Scholar
  17. 17.
    Kuan, J.: Learning Highcharts 4. Packt Publishing Ltd. Accessed 19 Sept 2015Google Scholar
  18. 18.
    Kubanek, J., Nolte, E.-M., Taubenböck, H., Wenzel, F., Kappas, M.: Capacities of remote sensing for population estimation in urban areas. In: Bostenaru Dan, M., Armas, I., Goretti, A. (eds.) Earthquake Hazard Impact and Urban Planning. EH, pp. 45–66. Springer, Dordrecht (2014). doi: 10.1007/978-94-007-7981-5_3 CrossRefGoogle Scholar
  19. 19.
    La Victoria Taqueria - 405 Photos - Mexican - Downtown - San Jose, CA - Reviews - Menu - Yelp. Accessed 19 Sept 2015
  20. 20.
    Laituri, M., Kodrich, K.: On line disaster response community: people as sensors of high magnitude disasters using internet GIS. Sensors 8(5), 3037–3055 (2008)CrossRefGoogle Scholar
  21. 21.
    Martin, D., Cockings, S., Harfoot, A.: Development of a geographical framework for census workplace data. J. Roy. Stat. Soc.: Ser. A (Appl. Stat.) 176(2), 585–602 (2013)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Martin, D., Cockings, S., Leung, S.: Developing a flexible framework for spatiotemporal population modeling. Ann. Assoc. Am. Geogr. 105(4), 754–772 (2015)CrossRefGoogle Scholar
  23. 23.
    Mennis, J., Hultgren, T.: Intelligent dasymetric mapping and its application to areal interpolation. Cartography Geogr. Inf. Sci. 33(3), 179–194 (2006)CrossRefGoogle Scholar
  24. 24.
    Namiot, D., Sneps-Sneppe, M.: Geofence and network proximity. In: Balandin, S., Andreev, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART -2013. LNCS, vol. 8121, pp. 117–127. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40316-3_11 CrossRefGoogle Scholar
  25. 25.
    Oracle Technology Network for Java Developers — Oracle Technology Network — Oracle. Accessed 19 Sept 2015
  26. 26.
    Popular times - Google My Business Help. Accessed 19 Sept 2015
  27. 27.
    Richardson, I., Thomson, M., Infield, D.: A high-resolution domestic building occupancy model for energy demand simulations. Energy and buildings 40(8), 1560–1566 (2008)CrossRefGoogle Scholar
  28. 28.
    Rose, A.N., Bright, E.A.: The LandScan Global Population Distribution Project: Current State of the Art and Prospective Innovation. Oak Ridge National Laboratory (ORNL) (2014)Google Scholar
  29. 29.
    San Jose, CA - Official Website - City Hall. Accessed 3 July 2016
  30. 30.
    San Jose Repertory Theatre - Wikipedia, the free encyclopedia. Accessed 3 July 2016
  31. 31.
    Sims, K.M., Weber, E.M., Bhaduri, B.L., Thakur, G.S., Resseguie, D.R.: Application of social media data to high-resolution mapping of a special event population. In: Griffith, D.A., Chun, Y., Dean, D.J. (eds.) Advances in Geocomputation. AGIS, pp. 67–74. Springer, Cham (2017). doi: 10.1007/978-3-319-22786-3_7 CrossRefGoogle Scholar
  32. 32.
    Smith, A.: US Smartphone Use in 2015. Pew Research Center (2015)Google Scholar
  33. 33.
    South Hall — San Jose - Innovation Starts Here — Team San Jose. Accessed 19 Sept 2015
  34. 34.
    Student Union, Inc. of SJSU — San Jose State University. Accessed 3 July 2016
  35. 35.
    The Tech Museum of Innovation - Wikipedia, the free encyclopedia. Accessed 19 Sept 2015
  36. 36.
    Toepke, S.L., Scott Starsman, R.: Population distribution estimation of an urban area using crowd sourced data for disaster response. In: 12th International Conference on Information Systems for Crisis Response and Management (2015)Google Scholar
  37. 37.
    Toepke, S.: Structure occupancy curve generation using geospatially enabled social media data. In: Proceedings of the 2nd International Conference on Geographical Information Systems Theory, Applications and Management, pp. 32–38 (2016)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Private Engineering FirmWashington DCUSA

Personalised recommendations