Fast Displacements Detection Techniques Considering Mass-Market GPS L1 Receivers

  • Paolo DaboveEmail author
  • Ambrogio Maria Manzino
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 741)


Fast displacements detection in real-time is a very high challenge due to the necessity to preserve buildings, infrastructures and the human life. In this paper this problem is addressed using some statistical techniques and a GPS mass-market receiver in real-time. Very often, most of landslides monitoring and deformation analysis are carried out by using traditional topographic instruments (e.g. total stations) or satellite techniques such as GNSS geodetic receivers, and many experiments were carried out considering these types of instruments. In this context it is fundamental to detect whether or not deformation exists, in order to predict future displacement. Filtering means are essential to process the diverse noisy measurements (especially if low cost sensors are considered) and estimate the parameters of interest. In this paper some results obtained considering mass-market GPS receivers coupled with statistical techniques are considered in order to understand if there are any displacements from a statistical point of view in real time. Instruments considered, tests, algorithms and results are herein reported.


Fast displacements detection GNSS NRTK positioning Mass-Market receivers Statistical analysis Accuracy 


  1. 1.
    Aharizad, N., Setan, H., Lim, M.: Optimized Kalman filter versus rigorous method in deformation analysis. J. Appl. Geodesy 6(3–4), 135–142 (2012)Google Scholar
  2. 2.
    Acar, M., Özlüdemir, M.T., Çelik, R.N., Erol, S., Ayan, T.: Landslide monitoring through Kalman Filtering: a case study in Gürpinar. In: Proceeding of XXth ISPRS Congress, Istanbul, Turkey (2004)Google Scholar
  3. 3.
    Álvarez-Esteban, P.C., Del Barrio, E., Cuesta-Albertos, J.A., Matran, C.: Trimmed comparison of distributions. J. Am. Stat. Assoc. 103(482), 697–704 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bellone, T., Dabove, P., Manzino, A.M., Taglioretti, C.: Real-time monitoring for fast deformations using GNSS low-cost receivers. Geomatics, Nat. Hazards Risk 7(2), 458–470 (2016)CrossRefGoogle Scholar
  5. 5.
    Benoit, L., Briole, P., Martin, O., Thom, C.: Real-time deformation monitoring by a wireless network of low-cost GPS. J. Appl. Geodesy 8(4), 1–10 (2014)Google Scholar
  6. 6.
    Bertachini, E., Capitani, A., Capra, A., Castagnetti, C., Corsini, A., Dubbini, M., Ronchetti, F.: Integrated surveying system for landslide monitoring, Valoria landslide (Appennines of Modena, Italy). Paper presented at: FIG working week 2009, Eilat, Israel (2009)Google Scholar
  7. 7.
    Brückl, E., Brunner, F.K., Lang, E., Mertl, S., Müller, M., Stary, U.: The Gradenbach Observatory - monitoring deep-seated gravitational slope deformation by geodetic, hydrological, and seismological methods. Landslides 10, 815–829 (2013)CrossRefGoogle Scholar
  8. 8.
    Calcaterra, S., Cesi, C., Di Maio, C., Gambino, P., Merli, K., Vallario, M., Vassallo, R.: Surface displacements of two landslides evaluated by GPS and inclinometer systems: a case study in Southern Apennines. Italy. Nat. Hazards 61(1), 257–266 (2012)CrossRefGoogle Scholar
  9. 9.
    Chrzanowski, A., Chen, Y., Romero, P., Secord, J.M.: Integration of geodetic and geotechnical deformation surveys in the geosciences. Tectonophysics 130(1–4), 369–383 (1986)CrossRefGoogle Scholar
  10. 10.
    Chow, G.C.: Tests of equality between sets of coefficients in two linear regressions. Econometrica 28(3), 591–605 (1960)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Cina, A., Piras, M.: Monitoring of landslides with mass market GPS: an alternative low cost solution. Geomatics, Nat. Hazards Risk (2014). Accessed Feb 2014
  12. 12.
    Coe, J.A., Ellis, W.L., Godt, J.W., Savage, W.Z., Savage, J.E., Michael, J.A., Kibler, J.D., Powers, P.S., Lidke, D.J., Debray, S.: Seasonal movement of the Slumgullion landslide determined from Global Positioning System surveys and field instrumentation, July 1998-March 2002. Eng. Geol. 68(1–2), 67–101 (2003)CrossRefGoogle Scholar
  13. 13.
    Cruden, D.M.: A simple definition of a landslide. Bull. Int. Assoc. Eng. Geology (Bulletin de l’Association Internationale de Géologie de l’Ingénieur) 43(1), 27–29 (1991)CrossRefGoogle Scholar
  14. 14.
    Cuesta-Albertos, J., Gordaliza, A., Matràn, C.: Trimmed k-means: an attempt to robustify quantizers. Ann. Stat. 25(2), 553–576 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Dabove, P., Manzino, A.M.: Kalman Filter as tool for the real-time detection of fast displacements by the use of low-cost GPS receivers. In: Proceedings of the 2nd International Conference on Geographical Information Systems Theory, Applications and Management, pp. 15-23 (2016). ISBN 978-989-758-188-5Google Scholar
  16. 16.
    Dabove, P., Manzino, A.M., Taglioretti, C.: GNSS network products for post-processing positioning: limitations and peculiarities. Appl. Geomatics 6(1), 27–36 (2014)., ISSN 1866-9298CrossRefGoogle Scholar
  17. 17.
    Dabove, P., Manzino, A.M.: GPS & GLONASS mass-market receivers: positioning performances and peculiarities. Sensors 14, 22159–22179 (2014)CrossRefGoogle Scholar
  18. 18.
    Eyo, E.E., Musa, T.A., Idris, K.M., Opaluwa, Y.D.: Reverse RTK data streaming for low-cost landslide monitoring. In: Abdul Rahman, A., Boguslawski, P., Anton, F., Said, M.N., Omar, K.M. (eds.) Geoinformation for Informed Decisions. LNGC, pp. 19–33. Springer, Cham (2014). doi: 10.1007/978-3-319-03644-1_2 CrossRefGoogle Scholar
  19. 19.
    Fraley, C., Raftery, A.E.: How many clusters? Which clustering method? Answers via model-based cluster analysis. Comput. J. 41(8), 578–588 (1998)CrossRefzbMATHGoogle Scholar
  20. 20.
    Fritz, H., Garcıa-Escudero, L.A., Mayo-Iscar, A.: tclust: An R package for a trimming approach to cluster analysis. J. Stat. Softw. 47(12), 1–26 (2012)CrossRefGoogle Scholar
  21. 21.
    Fritz, H., García-Escudero, L.A., Mayo-Iscar, A.: A fast algorithm for robust constrained clustering. Comput. Stat. Data Anal. 61, 124–136 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Gallegos, M.T.: Robust clustering under general normal assumptions (2001).
  23. 23.
    Gallegos, M.T.: Maximum likelihood clustering with outliers. In: Jajuga, K., Sokołowski, A., Bock, H.H. (eds.) Classification, Clustering, and Data Analysis. Studies in Classification, Data Analysis, and Knowledge Organization, pp. 247–255. Springer, Heidelberg (2002). doi: 10.1007/978-3-642-56181-8_27 CrossRefGoogle Scholar
  24. 24.
    Gallegos, M.T., Ritter, G.: A robust method for cluster analysis. Ann. Stat. 33, 347–380 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Garcia-Escudero, L.A., García-Escudero, A., Matrán, C., Mayo-Iscar, A.: A general trimming approach to robust cluster analysis. Ann. Stat. 36, 1324–1345 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    García-Escudero, L.A., Gordaliza, A., Matrán, C., Mayo-Iscar, A.: A review of robust clustering methods. Adv. Data Anal. Classif. 4(2–3), 89–109 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    García-Escudero, L.A., Gordaliza, A., Matrán, C., Mayo-Iscar, A.: Exploring the number of groups in robust model-based clustering. Stat. Comput. 21(4), 585–599 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Gili, J.A., Corominas, J., Rius, J.: Using global positioning system techniques in landslide monitoring. Eng. Geol. 55(3), 167–192 (2000)CrossRefGoogle Scholar
  29. 29.
    Gordaliza, A.: Best approximations to random variables based on trimming procedures. J. Approx. Theory 64, 162–180 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Günther, J., Heunecke, O., Pink, S., Schuhbäck, S.: Developments towards a low cost GNSS Based Sensor Network for the monitoring of landslides. Paper presented at: 13th FIG International Symposium on Deformation Measurements and Analysis, Lisbon (2008)Google Scholar
  31. 31.
    Gülal, E.: Application of Kalman filtering technique in the analysis of deformation measurements. J. Yıldız Technical University, (1) (1999). (in Turkish)Google Scholar
  32. 32.
    Hastaoglu, K.O., Sanli, D.U.: Monitoring Koyulhisar landslide using rapid static GPS: a strategy to remove biases from vertical velocities. Nat. Hazards 58, 1275–1294 (2011)CrossRefGoogle Scholar
  33. 33.
    Heunecke, O., Glabsch, J., Schuhbäck, S.: Landslide monitoring using low cost GNSS equipment – experiences from two alpine testing sites. J. Civil Eng. Archit. 45, 661–669 (2011)Google Scholar
  34. 34.
    Hoffman-Wellenhof, B., Lichtenegger, H., Wasle, E.: GNSS-Global Navigation Satellite Systems. GPS, GLONASS Galileo and More. Springer, Wien (2008)Google Scholar
  35. 35.
    Janssen, V., Rizos, C.: A mixed-mode GPS network processing approach for deformation monitoring applications. Surv. Rev. 37(287), 2–19 (2003)CrossRefGoogle Scholar
  36. 36.
    Kalman, R.E.: A new approach to linear filtering and prediction problems. Trans. ASME J. Basic Eng. 82, 35–45 (1960)CrossRefGoogle Scholar
  37. 37.
    Li, L., Kuhlmann, H.: Detection of deformations and outliers in real-time GPS measurments by Kalman Filter Model with Shaping Filter. In: 4th IAG Symposium on Geodesy for Geotechnical and Structural Engineering and 13th FIG Symposium on Deformation Measurements, Lisbon (2008)Google Scholar
  38. 38.
    Li, L., Kuhlmann, H.: Deformation detection in the GPS real-time series by the Multiple Kalman Filter Model. J. Surveying Eng. 136, 157–164 (2010)CrossRefGoogle Scholar
  39. 39.
    Li, L., Kuhlmann, H.: Real-time deformation measurements using time series of GPS coordinates processed by Kalman Filter with Shaping Filter. Surv. Rev. 44(326), 189–197 (2012)CrossRefGoogle Scholar
  40. 40.
    Mäkilä, P.M.: Kalman Filtering and Linear Quadratic Gaussian Control. Lecture notes for course 7604120, Part I (2004).
  41. 41.
    Malet, J.-P., Maquaire, O., Calais, E.: The use of global positioning system techniques for the continuous monitoring of landslides: application to the super-sauze earth flow (Alpes-de-Haute-Province, France). Geomorphology 43, 33–54 (2002)CrossRefGoogle Scholar
  42. 42.
    Manzino, A.M., Dabove, P.: Quality control of the NRTK positioning with mass-market receivers. In: Hsueh, Y.-H. (ed.) Global Positioning Systems: Signal Structure, Applications and Sources of Error and Biases (Chap. 2), pp. 17–40. Hauppauge NY, New York (2013)Google Scholar
  43. 43.
    Masiero, A., Guarnieri, A., Vettore, A., Pirotti, F.: A nonlinear filtering approach for smartphone-based indoor navigation, Tainan, Taiwan, 1–3 May 2013Google Scholar
  44. 44.
    Mora, P., Baldi, P., Casula, G., Fabris, M., Ghirotti, M., Mazzini, E., Pesci, A.: Global positioning systems and digital photogrammetry for the monitoring of mass movements: application to the Ca’ di Malta landslide (Northern Apennines, Italy). Eng. Geol. 68(1–2), 103–121 (2003)CrossRefGoogle Scholar
  45. 45.
    Moss, J.L.: Using the global positioning system to monitor dynamic ground deformation networks on potentially active landslides. Int. J. Appl. Earth Obs. Geoinf. 2(1), 24–32 (2000)CrossRefGoogle Scholar
  46. 46.
    Othman, Z., Wan Aziz, W.A., Anuar, A.: Evaluating the performance of GPS survey methods for landslide monitoring at hillside residential area: static vs rapid static. In: IEEE 7th International Colloquium on Signal Processing and its Applications, George Town, Penang (2011)Google Scholar
  47. 47.
    Peyret, M., Djamour, Y., Rizza, M., Ritz, J.F., Hurtrez, J.E., Goudarzi, M.A., Nankali, H., Chery, J., Le Dortz, K., Uri, F.: Monitoring of the large slow Kahrod landslide in Alboz mountain range (Iran) by GPS and SAR interferometry. Eng. Geol. 100, 131–141 (2008)CrossRefGoogle Scholar
  48. 48.
    Rizzo, V.: GPS monitoring and new data on slope movements in the Maratea Valley (Potenza, Basilicata). Phys. Chem. Earth, Parts A/B/C 27(36), 1535–1544 (2002)CrossRefGoogle Scholar
  49. 49.
    Rousseeuw, P.J.: Multivariate estimation with high breakdown point. In: Vincze, I., Grossmann, W., Pflug, G., Wertz, W. (eds.) Mathematical Statistics and Applications, vol. B, pp. 283–297. Reidel, Dordrecht (1985)Google Scholar
  50. 50.
    Rott, H., Nagler, T.: The contribution of radar interferometry to the assessment of landslide hazards. Adv. Space Res. 37(4), 710–719 (2006)CrossRefGoogle Scholar
  51. 51.
    Sedlak, V., Jecny, M.: Deformation measurements on Bulk Dam of waterwork in East Slovakia. Geol. Ecol. Min. Serv. L(2), 1–10 (2004)Google Scholar
  52. 52.
    Szostak-Chrzanowski, A., Chrzanowski, A., Massiéra, M.: Use of deformation monitoring results in solving geomechanical problems—case studies. Eng. Geol. 79(1), 3–12 (2005)CrossRefGoogle Scholar
  53. 53.
    Tagliavini, F., Mantovani, M., Marcato, G., Pasuto, A., Silvano, S.: Validation of landslide hazard assessment by means of GPS monitoring technique – a case study in the Dolomites (Eastern Alps, Italy). Nat. Hazards Earth Syst. Sci. 7, 185–193 (2007)CrossRefGoogle Scholar
  54. 54.
    Takasu, T., Yasuda, A.: Development of the low-cost RTK GPS receiver with the open source program package RTKLIB. In: International Symposium on GPS/GNSS, International Convention Centre, Jeju, Korea (2009)Google Scholar
  55. 55.
    Teunissen, P.J.G., Salzmann, M.A.: A recursive slip-page test for use in state-space filtering. Manuscripta Geodaetica 14, 383–390 (1989)Google Scholar
  56. 56.
    Wang, G.: GPS landslide monitoring single base vs. network solutions—a case study based on the Puerto Rico and Virgin Islands permanent GPS network. J. Geodetic Sci. 1(3), 191–203 (2011)CrossRefGoogle Scholar
  57. 57.
    Wang, G., Soler, T.: OPUS for horizontal sub-centimeter accuracy landslide monitoring: case study in Puerto Rico and Virgin Islands region. J. Surv. Eng. 138(3), 11 (2012)CrossRefGoogle Scholar
  58. 58.
    Weber, G., Dettmering, D., Gebhard, H.: Networked transport of RTCM via internet protocol (NTRIP). In: International Association of Geodesy Symposia: A Window on the Future of Geodesy, vol. 128 (2006)Google Scholar
  59. 59.
    Welsch, W., Heunecke, O.: Models and terminology for the analysis of geodetic monitoring observations. Official report of the ad-hoc committee of FIG working group, vol. 6, pp. 390–412 (2001)Google Scholar
  60. 60.
    Wei, Z., Dongli, F., Jinzhong, Y.: Adaptive Kalman Filtering method to the data processing of GPS deformation monitoring. In: Proceedings of the 2010 International Forum on Information Technology and Applications. - Volume 01 (IFITA 2010), vol. 1, pp. 288–292. IEEE Computer Society, Washington, DC, USA (2010). doi: 10.1109/IFITA.2010.18

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Environment, Land and Infrastructure EngineeringPolitecnico di TorinoTurinItaly

Personalised recommendations