Skip to main content

Fast Displacements Detection Techniques Considering Mass-Market GPS L1 Receivers

  • Conference paper
  • First Online:
Geographical Information Systems Theory, Applications and Management (GISTAM 2016)

Abstract

Fast displacements detection in real-time is a very high challenge due to the necessity to preserve buildings, infrastructures and the human life. In this paper this problem is addressed using some statistical techniques and a GPS mass-market receiver in real-time. Very often, most of landslides monitoring and deformation analysis are carried out by using traditional topographic instruments (e.g. total stations) or satellite techniques such as GNSS geodetic receivers, and many experiments were carried out considering these types of instruments. In this context it is fundamental to detect whether or not deformation exists, in order to predict future displacement. Filtering means are essential to process the diverse noisy measurements (especially if low cost sensors are considered) and estimate the parameters of interest. In this paper some results obtained considering mass-market GPS receivers coupled with statistical techniques are considered in order to understand if there are any displacements from a statistical point of view in real time. Instruments considered, tests, algorithms and results are herein reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aharizad, N., Setan, H., Lim, M.: Optimized Kalman filter versus rigorous method in deformation analysis. J. Appl. Geodesy 6(3–4), 135–142 (2012)

    Google Scholar 

  2. Acar, M., Özlüdemir, M.T., Çelik, R.N., Erol, S., Ayan, T.: Landslide monitoring through Kalman Filtering: a case study in Gürpinar. In: Proceeding of XXth ISPRS Congress, Istanbul, Turkey (2004)

    Google Scholar 

  3. Álvarez-Esteban, P.C., Del Barrio, E., Cuesta-Albertos, J.A., Matran, C.: Trimmed comparison of distributions. J. Am. Stat. Assoc. 103(482), 697–704 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bellone, T., Dabove, P., Manzino, A.M., Taglioretti, C.: Real-time monitoring for fast deformations using GNSS low-cost receivers. Geomatics, Nat. Hazards Risk 7(2), 458–470 (2016)

    Article  Google Scholar 

  5. Benoit, L., Briole, P., Martin, O., Thom, C.: Real-time deformation monitoring by a wireless network of low-cost GPS. J. Appl. Geodesy 8(4), 1–10 (2014)

    Google Scholar 

  6. Bertachini, E., Capitani, A., Capra, A., Castagnetti, C., Corsini, A., Dubbini, M., Ronchetti, F.: Integrated surveying system for landslide monitoring, Valoria landslide (Appennines of Modena, Italy). Paper presented at: FIG working week 2009, Eilat, Israel (2009)

    Google Scholar 

  7. Brückl, E., Brunner, F.K., Lang, E., Mertl, S., Müller, M., Stary, U.: The Gradenbach Observatory - monitoring deep-seated gravitational slope deformation by geodetic, hydrological, and seismological methods. Landslides 10, 815–829 (2013)

    Article  Google Scholar 

  8. Calcaterra, S., Cesi, C., Di Maio, C., Gambino, P., Merli, K., Vallario, M., Vassallo, R.: Surface displacements of two landslides evaluated by GPS and inclinometer systems: a case study in Southern Apennines. Italy. Nat. Hazards 61(1), 257–266 (2012)

    Article  Google Scholar 

  9. Chrzanowski, A., Chen, Y., Romero, P., Secord, J.M.: Integration of geodetic and geotechnical deformation surveys in the geosciences. Tectonophysics 130(1–4), 369–383 (1986)

    Article  Google Scholar 

  10. Chow, G.C.: Tests of equality between sets of coefficients in two linear regressions. Econometrica 28(3), 591–605 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cina, A., Piras, M.: Monitoring of landslides with mass market GPS: an alternative low cost solution. Geomatics, Nat. Hazards Risk (2014). http://www.tandfonline.com/doi/full/10.1080/19475705.2014.889046#.U0-vV6IzfcB. Accessed Feb 2014

  12. Coe, J.A., Ellis, W.L., Godt, J.W., Savage, W.Z., Savage, J.E., Michael, J.A., Kibler, J.D., Powers, P.S., Lidke, D.J., Debray, S.: Seasonal movement of the Slumgullion landslide determined from Global Positioning System surveys and field instrumentation, July 1998-March 2002. Eng. Geol. 68(1–2), 67–101 (2003)

    Article  Google Scholar 

  13. Cruden, D.M.: A simple definition of a landslide. Bull. Int. Assoc. Eng. Geology (Bulletin de l’Association Internationale de Géologie de l’Ingénieur) 43(1), 27–29 (1991)

    Article  Google Scholar 

  14. Cuesta-Albertos, J., Gordaliza, A., Matràn, C.: Trimmed k-means: an attempt to robustify quantizers. Ann. Stat. 25(2), 553–576 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dabove, P., Manzino, A.M.: Kalman Filter as tool for the real-time detection of fast displacements by the use of low-cost GPS receivers. In: Proceedings of the 2nd International Conference on Geographical Information Systems Theory, Applications and Management, pp. 15-23 (2016). ISBN 978-989-758-188-5

    Google Scholar 

  16. Dabove, P., Manzino, A.M., Taglioretti, C.: GNSS network products for post-processing positioning: limitations and peculiarities. Appl. Geomatics 6(1), 27–36 (2014). http://link.springer.com/article/10.1007/s12518-014-0122-3, ISSN 1866-9298

    Article  Google Scholar 

  17. Dabove, P., Manzino, A.M.: GPS & GLONASS mass-market receivers: positioning performances and peculiarities. Sensors 14, 22159–22179 (2014)

    Article  Google Scholar 

  18. Eyo, E.E., Musa, T.A., Idris, K.M., Opaluwa, Y.D.: Reverse RTK data streaming for low-cost landslide monitoring. In: Abdul Rahman, A., Boguslawski, P., Anton, F., Said, M.N., Omar, K.M. (eds.) Geoinformation for Informed Decisions. LNGC, pp. 19–33. Springer, Cham (2014). doi:10.1007/978-3-319-03644-1_2

    Chapter  Google Scholar 

  19. Fraley, C., Raftery, A.E.: How many clusters? Which clustering method? Answers via model-based cluster analysis. Comput. J. 41(8), 578–588 (1998)

    Article  MATH  Google Scholar 

  20. Fritz, H., Garcıa-Escudero, L.A., Mayo-Iscar, A.: tclust: An R package for a trimming approach to cluster analysis. J. Stat. Softw. 47(12), 1–26 (2012)

    Article  Google Scholar 

  21. Fritz, H., García-Escudero, L.A., Mayo-Iscar, A.: A fast algorithm for robust constrained clustering. Comput. Stat. Data Anal. 61, 124–136 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gallegos, M.T.: Robust clustering under general normal assumptions (2001). http://www.fmi.uni-passau.de/forschung/mip-berichte/MIP-0103.html

  23. Gallegos, M.T.: Maximum likelihood clustering with outliers. In: Jajuga, K., Sokołowski, A., Bock, H.H. (eds.) Classification, Clustering, and Data Analysis. Studies in Classification, Data Analysis, and Knowledge Organization, pp. 247–255. Springer, Heidelberg (2002). doi:10.1007/978-3-642-56181-8_27

    Chapter  Google Scholar 

  24. Gallegos, M.T., Ritter, G.: A robust method for cluster analysis. Ann. Stat. 33, 347–380 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Garcia-Escudero, L.A., García-Escudero, A., Matrán, C., Mayo-Iscar, A.: A general trimming approach to robust cluster analysis. Ann. Stat. 36, 1324–1345 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. García-Escudero, L.A., Gordaliza, A., Matrán, C., Mayo-Iscar, A.: A review of robust clustering methods. Adv. Data Anal. Classif. 4(2–3), 89–109 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. García-Escudero, L.A., Gordaliza, A., Matrán, C., Mayo-Iscar, A.: Exploring the number of groups in robust model-based clustering. Stat. Comput. 21(4), 585–599 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Gili, J.A., Corominas, J., Rius, J.: Using global positioning system techniques in landslide monitoring. Eng. Geol. 55(3), 167–192 (2000)

    Article  Google Scholar 

  29. Gordaliza, A.: Best approximations to random variables based on trimming procedures. J. Approx. Theory 64, 162–180 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  30. Günther, J., Heunecke, O., Pink, S., Schuhbäck, S.: Developments towards a low cost GNSS Based Sensor Network for the monitoring of landslides. Paper presented at: 13th FIG International Symposium on Deformation Measurements and Analysis, Lisbon (2008)

    Google Scholar 

  31. Gülal, E.: Application of Kalman filtering technique in the analysis of deformation measurements. J. Yıldız Technical University, (1) (1999). (in Turkish)

    Google Scholar 

  32. Hastaoglu, K.O., Sanli, D.U.: Monitoring Koyulhisar landslide using rapid static GPS: a strategy to remove biases from vertical velocities. Nat. Hazards 58, 1275–1294 (2011)

    Article  Google Scholar 

  33. Heunecke, O., Glabsch, J., Schuhbäck, S.: Landslide monitoring using low cost GNSS equipment – experiences from two alpine testing sites. J. Civil Eng. Archit. 45, 661–669 (2011)

    Google Scholar 

  34. Hoffman-Wellenhof, B., Lichtenegger, H., Wasle, E.: GNSS-Global Navigation Satellite Systems. GPS, GLONASS Galileo and More. Springer, Wien (2008)

    Google Scholar 

  35. Janssen, V., Rizos, C.: A mixed-mode GPS network processing approach for deformation monitoring applications. Surv. Rev. 37(287), 2–19 (2003)

    Article  Google Scholar 

  36. Kalman, R.E.: A new approach to linear filtering and prediction problems. Trans. ASME J. Basic Eng. 82, 35–45 (1960)

    Article  Google Scholar 

  37. Li, L., Kuhlmann, H.: Detection of deformations and outliers in real-time GPS measurments by Kalman Filter Model with Shaping Filter. In: 4th IAG Symposium on Geodesy for Geotechnical and Structural Engineering and 13th FIG Symposium on Deformation Measurements, Lisbon (2008)

    Google Scholar 

  38. Li, L., Kuhlmann, H.: Deformation detection in the GPS real-time series by the Multiple Kalman Filter Model. J. Surveying Eng. 136, 157–164 (2010)

    Article  Google Scholar 

  39. Li, L., Kuhlmann, H.: Real-time deformation measurements using time series of GPS coordinates processed by Kalman Filter with Shaping Filter. Surv. Rev. 44(326), 189–197 (2012)

    Article  Google Scholar 

  40. Mäkilä, P.M.: Kalman Filtering and Linear Quadratic Gaussian Control. Lecture notes for course 7604120, Part I (2004). http://www.dt.fee.unicamp.br/~jbosco/ia856/KF_part1_Makila.pdf

  41. Malet, J.-P., Maquaire, O., Calais, E.: The use of global positioning system techniques for the continuous monitoring of landslides: application to the super-sauze earth flow (Alpes-de-Haute-Province, France). Geomorphology 43, 33–54 (2002)

    Article  Google Scholar 

  42. Manzino, A.M., Dabove, P.: Quality control of the NRTK positioning with mass-market receivers. In: Hsueh, Y.-H. (ed.) Global Positioning Systems: Signal Structure, Applications and Sources of Error and Biases (Chap. 2), pp. 17–40. Hauppauge NY, New York (2013)

    Google Scholar 

  43. Masiero, A., Guarnieri, A., Vettore, A., Pirotti, F.: A nonlinear filtering approach for smartphone-based indoor navigation, Tainan, Taiwan, 1–3 May 2013

    Google Scholar 

  44. Mora, P., Baldi, P., Casula, G., Fabris, M., Ghirotti, M., Mazzini, E., Pesci, A.: Global positioning systems and digital photogrammetry for the monitoring of mass movements: application to the Ca’ di Malta landslide (Northern Apennines, Italy). Eng. Geol. 68(1–2), 103–121 (2003)

    Article  Google Scholar 

  45. Moss, J.L.: Using the global positioning system to monitor dynamic ground deformation networks on potentially active landslides. Int. J. Appl. Earth Obs. Geoinf. 2(1), 24–32 (2000)

    Article  Google Scholar 

  46. Othman, Z., Wan Aziz, W.A., Anuar, A.: Evaluating the performance of GPS survey methods for landslide monitoring at hillside residential area: static vs rapid static. In: IEEE 7th International Colloquium on Signal Processing and its Applications, George Town, Penang (2011)

    Google Scholar 

  47. Peyret, M., Djamour, Y., Rizza, M., Ritz, J.F., Hurtrez, J.E., Goudarzi, M.A., Nankali, H., Chery, J., Le Dortz, K., Uri, F.: Monitoring of the large slow Kahrod landslide in Alboz mountain range (Iran) by GPS and SAR interferometry. Eng. Geol. 100, 131–141 (2008)

    Article  Google Scholar 

  48. Rizzo, V.: GPS monitoring and new data on slope movements in the Maratea Valley (Potenza, Basilicata). Phys. Chem. Earth, Parts A/B/C 27(36), 1535–1544 (2002)

    Article  Google Scholar 

  49. Rousseeuw, P.J.: Multivariate estimation with high breakdown point. In: Vincze, I., Grossmann, W., Pflug, G., Wertz, W. (eds.) Mathematical Statistics and Applications, vol. B, pp. 283–297. Reidel, Dordrecht (1985)

    Google Scholar 

  50. Rott, H., Nagler, T.: The contribution of radar interferometry to the assessment of landslide hazards. Adv. Space Res. 37(4), 710–719 (2006)

    Article  Google Scholar 

  51. Sedlak, V., Jecny, M.: Deformation measurements on Bulk Dam of waterwork in East Slovakia. Geol. Ecol. Min. Serv. L(2), 1–10 (2004)

    Google Scholar 

  52. Szostak-Chrzanowski, A., Chrzanowski, A., Massiéra, M.: Use of deformation monitoring results in solving geomechanical problems—case studies. Eng. Geol. 79(1), 3–12 (2005)

    Article  Google Scholar 

  53. Tagliavini, F., Mantovani, M., Marcato, G., Pasuto, A., Silvano, S.: Validation of landslide hazard assessment by means of GPS monitoring technique – a case study in the Dolomites (Eastern Alps, Italy). Nat. Hazards Earth Syst. Sci. 7, 185–193 (2007)

    Article  Google Scholar 

  54. Takasu, T., Yasuda, A.: Development of the low-cost RTK GPS receiver with the open source program package RTKLIB. In: International Symposium on GPS/GNSS, International Convention Centre, Jeju, Korea (2009)

    Google Scholar 

  55. Teunissen, P.J.G., Salzmann, M.A.: A recursive slip-page test for use in state-space filtering. Manuscripta Geodaetica 14, 383–390 (1989)

    Google Scholar 

  56. Wang, G.: GPS landslide monitoring single base vs. network solutions—a case study based on the Puerto Rico and Virgin Islands permanent GPS network. J. Geodetic Sci. 1(3), 191–203 (2011)

    Article  Google Scholar 

  57. Wang, G., Soler, T.: OPUS for horizontal sub-centimeter accuracy landslide monitoring: case study in Puerto Rico and Virgin Islands region. J. Surv. Eng. 138(3), 11 (2012)

    Article  Google Scholar 

  58. Weber, G., Dettmering, D., Gebhard, H.: Networked transport of RTCM via internet protocol (NTRIP). In: International Association of Geodesy Symposia: A Window on the Future of Geodesy, vol. 128 (2006)

    Google Scholar 

  59. Welsch, W., Heunecke, O.: Models and terminology for the analysis of geodetic monitoring observations. Official report of the ad-hoc committee of FIG working group, vol. 6, pp. 390–412 (2001)

    Google Scholar 

  60. Wei, Z., Dongli, F., Jinzhong, Y.: Adaptive Kalman Filtering method to the data processing of GPS deformation monitoring. In: Proceedings of the 2010 International Forum on Information Technology and Applications. - Volume 01 (IFITA 2010), vol. 1, pp. 288–292. IEEE Computer Society, Washington, DC, USA (2010). doi:10.1109/IFITA.2010.18

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Dabove .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Dabove, P., Manzino, A.M. (2017). Fast Displacements Detection Techniques Considering Mass-Market GPS L1 Receivers. In: Grueau, C., Laurini, R., Rocha, J. (eds) Geographical Information Systems Theory, Applications and Management. GISTAM 2016. Communications in Computer and Information Science, vol 741. Springer, Cham. https://doi.org/10.1007/978-3-319-62618-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62618-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62617-8

  • Online ISBN: 978-3-319-62618-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics