Skip to main content

Zero Crossing Switching Control for L-Based DC–DC Converters

  • Chapter
  • First Online:
Energy Harvesting for Self-Powered Wearable Devices

Part of the book series: Analog Circuits and Signal Processing ((ACSP))

  • 1368 Accesses

Abstract

In this chapter, ZCS control techniques for inductor-based boost converters are presented. The ZCS circuit controls the high side switch of the synchronous inductor converter to maintain the output voltage and hence the efficiency. In the first section, several reported ZCS techniques are explained and compared in regard to design, complexity, and efficiency. Then, an example of an efficient ZCS method is introduced which is designed to enhance the dynamics of the inductor converter as well as the efficiency. Measurement results are presented which confirm the operation of the ZCS circuit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y. Ramadass, A. Chandrakasan, A battery-less thermoelectric energy harvesting interface circuit with 35 mV startup voltage. IEEE J. Solid State Circuits 46(1), 333–341 (2011)

    Article  Google Scholar 

  2. S. Bandyopadhyay, P. Mercier, A. Lysaght, K. Stankovic, A. Chandrakasan, A 1.1nW energy harvesting system with 544pW quiescent power for next-generation implants, in IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), Feb 2014, pp. 396–397

    Google Scholar 

  3. R. Damodaran Prabha, G. Rincon-Mora, 0.18-μm light-harvesting battery-assisted charger-supply CMOS system. IEEE Trans. Power Electron. 31, 2950–2958 (2016)

    Google Scholar 

  4. P.-S. Weng, H.-Y. Tang, P.-C. Ku, L.-H. Lu, 50 mV-input batteryless boost converter for thermal energy harvesting. IEEE J. Solid State Circuits 48(4), 1031–1041 (2013)

    Article  Google Scholar 

  5. E. Carlson, K. Strunz, B. Otis, A 20 mV input boost converter with efficient digital control for thermoelectric energy harvesting. IEEE J. Solid State Circuits 45(4), 741–750 (2010)

    Article  Google Scholar 

  6. P.-H. Chen, P.-Y. Fan, An 83.4% peak efficiency single-inductor multiple-output based adaptive gate biasing DC-DC converter for thermoelectric energy harvesting. IEEE Trans. Circuits Syst. Regul. Pap. 62, 405–412 (2015)

    Google Scholar 

  7. M. Alhawari, B. Mohammad, H. Saleh, M. Ismail, An efficient zero current switching control for L-based DC-DC converters in TEG applications. IEEE Trans. Circuits Syst. Express Briefs 64, 294–298 (2017)

    Article  Google Scholar 

  8. S. Kim, G. Rincon-Mora, 23.4 dual-source single-inductor 0.18μm CMOS charger-supply with nested hysteretic and adaptive on-time PWM control, in IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), Feb 2014, pp. 400–401

    Google Scholar 

  9. P.-H. Chen, C.-S. Wu, K.-C. Lin, A 50nW-to-10mW output power tri-mode digital buck converter with self-tracking zero current detection for photovoltaic energy harvesting, in Solid- State Circuits Conference - (ISSCC), 2015 IEEE International, Feb 2015, pp. 1–3

    Google Scholar 

  10. M. Alhawari, B. Mohammad, H. Saleh, M. Ismail, An all-digital, CMOS zero current switching circuit for thermal energy harvesting, in 2015 European Conference on Circuit Theory and Design (ECCTD), Aug 2015, pp. 1–4

    Google Scholar 

  11. N. Bayasi, T. Tekeste, H. Saleh, B. Mohammad, A. Khandoker, M. Ismail, Low-power ECG-based processor for predicting ventricular arrhythmia. IEEE Trans. Very Large Scale Integr. VLSI Syst. PP(99), 1–13 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Alhawari, M., Mohammad, B., Saleh, H., Ismail, M. (2018). Zero Crossing Switching Control for L-Based DC–DC Converters. In: Energy Harvesting for Self-Powered Wearable Devices. Analog Circuits and Signal Processing. Springer, Cham. https://doi.org/10.1007/978-3-319-62578-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62578-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62577-5

  • Online ISBN: 978-3-319-62578-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics