Skip to main content

Optical Simulation of Different Cavity Receivers Shape Used in Solar Tower Power Plant

  • Chapter
  • First Online:
Exergy for A Better Environment and Improved Sustainability 2

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

In this paper, we present an optical simulation of concentrating solar tower system using different forms of cavity receiver. Mathematical model used to find the position of the sun, angle of incidence, position of the reflected ray and orientation of heliostats is developed in MATLAB. For each heliostat, the angle of incidence is included in the calculation of the reflected radiation. Optical simulation was performed employing TracePro ray tracing software using Monte Carlo ray tracing method to get the concentrated solar ray distribution in the cavity receiver. The aim of the work is to seek the geometry that gives the best distribution of concentrated rays, with the best efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Belhomme, B., Pitz-Paal, R., Schwarzboezl, P., Ulmer, S.: A new fast ray tracing tool for high-precision simulation of heliostat fields [Journal]. J. Sol. Energy Eng. Trans. ASME. 131, 3 (2009)

    Article  Google Scholar 

  • Benjamin, G.: Modélisation et dimensionnement d’un récepteur solaire à air pressurisé pour le projet PEGASE [Journal]. Thèse univ- Perpignan [s.n.]

    Google Scholar 

  • Capderou.: Atlas solaire de l’Algérie [Journal]. OPU Tome 2 (1986)

    Google Scholar 

  • Chong, K.K., Tan, M.H.: Comparison study of two different sun-tracking methods in optical efficiency of heliostat field [Journal]. Hindawi Publ. Corp. Int. J. Photoenergy. 2012, 10 (2012)

    Google Scholar 

  • D Claude.: Performance et limites de chaudière à gaz de centrales solaires [Journal]. Thèse N° 474. Vol. Thèse N° 474 (1983)

    Google Scholar 

  • Duffie, J.A., Beckman, W.A.: Solar Engineering of Thermal Processes [Journal]. Wiley (2006)

    Google Scholar 

  • Fang, J.B., Tu, N., Wei, J.J.: Numerical investigation of start-up performance of a solar cavity receiver [Journal]. Renew. Energy. 53, 35–42 (2013)

    Article  Google Scholar 

  • Fang, J.B., Wei, J.J., Dong, X.W., Wang, Y.S.: Thermal performance simulation of a solar cavity receiver under windy conditions [Journal]. Sol. Energy. 85, 126–138 (2011)

    Article  Google Scholar 

  • Garcia, P., Ferriere, A., Bezian, J.J.: Codes for solar flux calculation dedicated to central receiver system applications: a comparative review [Journal]. Sol. Energy. 82, 189–197 (2008)

    Article  Google Scholar 

  • James, A., Terry, G.: Thermal performance of solar concentrator cavity receiver systems [Journal]. Sol. Energy. 34, 135–142 (1985)

    Article  Google Scholar 

  • Lambda Research Corporation User’s Manual [Journal]. Lambda Research Corporation, Littleton [s.n.], Release 5.0 : Vol. Release 5.0 (2009)

    Google Scholar 

  • Lina, M., Sumathy, K., Dai, Y.J., Zhao, X.K.: Performance investigation on a linear Fresnel lens solar collector using cavity receiver [Journal]. Sol. Energy. 107, 50–62 (2014)

    Article  Google Scholar 

  • Lundy: Sargent & Assessment of Parabolic Trough and Power Tower Solar Technology Cost and Performance Forecasts [Journal]. National Renewable Energy Laboratory NREL. (NREL/SR-550-34440) : Vols. (NREL/SR-550-34440) (2003)

    Google Scholar 

  • Omar, B., Abdallah, K., Kamal, M.: A review of studies on central receiver solar thermal power plants [Journal]. Renew. Sust. Energ. Rev. 23, 12–39 (2013)

    Article  Google Scholar 

  • Paitoonsurikarn, S., Lovegrove, K.: A new correlation for predicting the free convection loss from solar dish concentrating receivers [Journal]. Proceedings of 44th ANZSES Conference. Australia : [s.n.], (2006)

    Google Scholar 

  • Pavlovic, M., Penot, F.: Experiments in the mixed convection regime in an isothermal open cubic cavity [Journal]. Exp. Thermal Fluid Sci. 4, 648–655 (1991)

    Article  Google Scholar 

  • Robert, Y.Ma.: Wind Effects on Convective Heat Loss from a Cavity Receiver for a Parabolic Concentrating Solar Collector [Journal]. Sandia National Laboratories Technical Library, Vols. SAND92–7293

    Google Scholar 

  • Siala, F.M.F., Elayeb, M.E.: Mathematical formulation of a graphical method for a no-blocking heliostat field layout [Journal]. Renew. Energy. 23, 77–92 (2001)

    Article  Google Scholar 

  • Wu, S.Y., Xiao, L., Li, Y.R.: Effect of aperture position and size on natural convection heat loss of a solar heat-pipe receiver [Journal]. Appl. Therm. Eng. 31, 2787–2796 (2011)

    Article  Google Scholar 

  • Yang, X., Yang, X., Ding, J., Shao, Y., Fan, H.: Numerical simulation study on the heat transfer characteristics of the tube receiver of the solar thermal power tower [Journal]. Appl. Energy. 90, 142–147 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toufik Arrif .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arrif, T., Benchabane, A., Gama, A., Merarda, H., Belaid, A. (2018). Optical Simulation of Different Cavity Receivers Shape Used in Solar Tower Power Plant. In: Aloui, F., Dincer, I. (eds) Exergy for A Better Environment and Improved Sustainability 2. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-62575-1_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62575-1_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62574-4

  • Online ISBN: 978-3-319-62575-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics