Skip to main content

Motion of a Solid Particle in a Water Flow Inside a Pipe

  • Chapter
  • First Online:
Book cover Exergy for A Better Environment and Improved Sustainability 1

Part of the book series: Green Energy and Technology ((GREEN))

  • 1920 Accesses

Abstract

This paper deals with modeling, simulation, and experimental solid/fluid flow in a pipe. Our approach focuses on particle interaction and motion behavior along the experimental section of a pipe. The motion of large calibrated beads of alumina in a turbulent water flow in a horizontal pipe is experimentally investigated. We also present an experimental study of the hydraulic transport of big solid particles in a horizontal pipe. Particle motion in the liquid is captured with a CCD camera. For image processing, a computing code is developed in order to visualize the particle trajectories. The modeling and simulation of the movement of a solid particle in a liquid flow are done. Modeled trajectories compared with experimental results show good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Auton, T.R., Hunt, J.C.R., Prud'Homme, M.: The force exerted on a body in inviscid unsteady non-uniform rotational flow. J. Fluid Mech. 197, 241–257 (1988)

    Google Scholar 

  • Bank, R., Welfert, B., Yserentant, H.: A class of iterative methods for solving saddle point problems. Numer. Math. 666, 645–666 (1989)

    Article  MathSciNet  Google Scholar 

  • Böhm, T.: Motion and interaction of a set of particles in a supercritical flow. Thesis, l'Université Grenoble 1 – Joseph Fourier (2005)

    Google Scholar 

  • Bratland, O.: Pipe flow 2: multi-phase flow assurance (2010)

    Google Scholar 

  • Brown, P., Lawler, D.: Sphere drag and settling velocity revisited. J. Environ. Eng. 129(3), 222–231 (2003)

    Article  Google Scholar 

  • Clift, R., Grace, J.R., Weber, M.E.: Bubbles, Drops, and Particles. Dover Publications, Inc., Mineola, New York, USA (2005). ISBN: 0-486-44580-1

    Google Scholar 

  • Doron, P., Barnea, D.: A three layer model for solid liquid flow in horizontal pipes. Int. J. Multiphase Flow. 19(6), 1029–1043 (1993)

    Article  Google Scholar 

  • Doron, P., Barnea, D.: Flow pattern maps for solid–liquid flow in pipes. Int. J. Multiphase Flow. 22, 273–283 (1996)

    Article  Google Scholar 

  • Doron, P., Granica, D., Barnea, D.: Slurry flow in horizontal pipes, experimental and modeling. Int. J. Multiphase Flow. 13(4), 535–547 (1987)

    Article  Google Scholar 

  • Durand, R.: Basic relationships of the transportation of solids in pipes – experimental research. Proceedings of the International Association of Hydraulic Research, Minneapolis (1953)

    Google Scholar 

  • Durand, R., Condolios, E.: Etude experimentale du refoulement des materieaux en conduites en particulier des produits de dragage et des schlamms. Deuxiemes Journees de l'Hydraulique. 27–55 (1952)

    Google Scholar 

  • Flemmer, R., Banks, C.: On the drag coefficient of a sphere. Powder Technol. 48(3), 217–221 (1986)

    Article  Google Scholar 

  • Fuhrboter, A.: Über die Förderung von Sand-Wasser-Gemischen in Rohrleitungen. Mitteilungen des Franzius-Instituts, H. 19 (1961)

    Google Scholar 

  • Gibert, R.: Transport hydraulique et refoulement des mixtures en conduites. Annales des Ponts et Chausees. 130(3), 307–374 (1960.), 130(4), 437–494

    Google Scholar 

  • Jodeau, M.: “Etude expérimentale des mécanismes de transport solide par charriage torrentiel”. Mémoire de DEA, Cemagref Grenoble Février (Septembre 2004)

    Google Scholar 

  • Jufin, A.P., Lopatin, N.A.: O projekte TUiN na gidrotransport zernistych materialov po stalnym truboprovodam. Gidrotechniceskoe Strojitelstvo. 9, 49–52 (1966)

    Google Scholar 

  • Magnaudet, J., Legendre, D.: Some aspects of the lift force on a spherical bubble. In: Fascination of Fluid Dynamics, pp. 441–461. Springer Netherlands, Dordrecht (1998)

    Chapter  Google Scholar 

  • Matousek, V.: Flow mechanism of sand/water mixtures in pipelines. PhD thesis, Delft University of Technology, Delft (1997)

    Google Scholar 

  • Newitt, D.M., Richardson, M.C., Abbott, M., Turtle, R.B.: Hydraulic conveying of solids in horizontal pipes. Trans. Inst. Chem. Eng. 33, 93–110 (1955)

    Google Scholar 

  • Peker, S.M., Helvaci. S.S.: Solid-Liquid Two Phase Flow. Elsevier Science (2011)

    Google Scholar 

  • Ravelet, F., Bakir, F., Khelladi, S., Rey, R.: Experimental study of hydraulic transport of large particles in horizontal pipes. Exp. Thermal Fluid Sci. 45, 87–197 (2013)

    Article  Google Scholar 

  • Richardson, J.F., Zaki, W.N.: Sedimentation and fluidisation. Trans. Inst. Chem. Eng. 32, 35–53 (1957)

    Google Scholar 

  • Turian, R.M., Yuan, T.F.: Flow of slurries in pipelines. AICHE J. 23, 232–243 (1977)

    Article  Google Scholar 

  • Wilson, K.C., Pugh, F.J.: Dispersive-force modeling of turbulent suspension in heterogeneous slurry flow. Can. J. Chem. Eng. 66, 721–727 (1988)

    Article  Google Scholar 

  • Wilson, K.C., Addie, G.R., Clift, R.: Slurry Transport Using Centrifugal Pumps. Elsevier Applied Sciences, New York (1992)

    Google Scholar 

  • Worster, R.C., Denny, D.F.: Hydraulic transport of solid materials in pipelines. Inst. Mech. Eng. (London). 563–586 (1955)

    Google Scholar 

  • Zandi, I.: Hydraulic transport of bulky materials. In: Zandi, I. (ed.) Advances in Solid–Liquid Flow in Pipes and Its Applications, pp. 1–38. Pergamon Press, Oxford (1971)

    Google Scholar 

  • Zandi, I., Govatos, G.: Heterogeneous flow of solids in pipelines. Proc. ACSE J. Hydraul. Div. 93(HY3), 145–159 (1967)

    Google Scholar 

Download references

Acknowledgments

This research was supported by the DynFluid Laboratory at Arts et Métiers ParisTech. We would like to express our gratitude to Pr. Farid BAKIR for his assistance in the design and development of the experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aomar Ait Aider .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zouaoui, S., Aider, A.A., Djebouri, H., Mohammedi, K., Khelladi, S. (2018). Motion of a Solid Particle in a Water Flow Inside a Pipe. In: Aloui, F., Dincer, I. (eds) Exergy for A Better Environment and Improved Sustainability 1. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-62572-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62572-0_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62571-3

  • Online ISBN: 978-3-319-62572-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics