Skip to main content

CRMPSoC: New Solution for Feasible Reconfigurable MPSoC

  • Conference paper
  • First Online:
Software Technologies (ICSOFT 2016)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 743))

Included in the following conference series:

  • 455 Accesses

Abstract

This paper is dealing with the reconfiguration of a flexible real-time Network-on-Chip (NoC) in Multiprocessors System-on-Chip MPSoC architectures. We assume that each NoC’s node is composed of a processor and a router. A processor is assumed to be composed of dependent periodic and aperiodic operating system tasks. The paper addresses low-power adaptations of MPSoC when dynamic reconfigurations of the periodic and aperiodic tasks (sharing resources) are applied at run-time to save or improve the performance. The reconfiguration is defined as any operation allowing the addition-removal-update of periodic dependent OS (Operating System) tasks that share resources. For two added dependent tasks assigned to different processors, a message is added automatically on the NoC. After a such scenario, several real-time constraints may be violated and the power consumption increased.In order to resolve this problem, a new approach CRMPSoC (Abbrev. Cynapsys-Reconfigurable MPSoC) that is composed of two steps is proposed: (1) Applying a reconfiguration: Selection of reconfiguration scenarios, and (2) System Feasibility: A multi-agent architecture based on a master/slave model is defined where a slave agent is assigned to each node to verify the system/bus feasibility, and a master is proposed for the whole architecture if any perturbation occurs at run-time by proposing software or hardware solutions. Since the kernel is not reconfigurable, we develop a new middleware that will support the different steps of our approach. The latter is applied to a real case study for the evaluation of the paper’s contribution.

This research work is carried out within a MOBIDOC PhD thesis of the PASRI program, EU-funded and administered by ANPR (Tunisia). This national project is a collaboration between LISI Lab at University of Carthage, Cynapsys (French-German company installed in Tunisia), Systems Control Lab at Xidian University in China and Macau University of Science and Technology in Macau. We thank all directors of Cynapsys for their technical and financial stable supports. Special thank to all Master and Graduate Students who partially supported this project. This work is partially supported by Science and Technology Development Fund, MSAR, under Grant No. 066/2013/A2.

M. Khalgui is also with ITIA Institute, National Council of Research, Rome 00161, Italy.

Z.W. Li is also with the Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Change history

  • 02 February 2019

    The original version of the chapter “CRMPSoC: New Solution for Feasible Reconfigurable MPSoC”, starting on p.175 was revised. An affiliation has been added. The original chapter was corrected.

Notes

  1. 1.

    We are very grateful for the company Cynapsys which provides us this FPGA. It is characterized by: (a) High-performance Stratix III EP3SL150F1152 FPGA, (b) DDR2 SDRAM and QDR II SRAM, (c) PSRAM and flash memory, (d) USB 2.0 MAC/PHY, (e) Graphics and character LCD displays, and (f) On-board embedded USB-BlasterTM download cable.

References

  1. Khemaissia, I., Mosbahi, O., Khalgui, M., Li, Z.W.: New methodology for feasible reconfigurable real-time networked-on-chip NoC. In: Proceedings of the 11th International Joint Conference on Software Technologies (ICSOFT), Lisbon, Portugal, pp. 249–257 (2016)

    Google Scholar 

  2. Wang, X., Khalgui, M., Li, Z.W.: Dynamic low power reconfigurations of real-time embedded systems. In: Proceedings of 1st Pervasive Embedded Computing and Communication Systems, Algarve, Portugal, pp. 415–420, March 2011

    Google Scholar 

  3. Wang, X., Khemaissia, I., Khalgui, M., Li, Z.W., Mosbahi, O., Zhou, M.C.: Dynamic low-power reconfiguration of real-time systems with periodic and probabilistic tasks. IEEE Trans. Autom. Sci. Eng. 12(1), 1–14 (2015)

    Article  Google Scholar 

  4. Khemaissia, I., Mosbahi, O., Khalgui, M., Bouzayen, W.: New reconfigurable middleware for feasible adaptive RT-Linux. In: Proceedings of the 4th Pervasive Embedded Computing and Communication Systems, Lisbon, Portugal, pp. 158–167, January 2014

    Google Scholar 

  5. Khemaissia, I., Mosbahi, O., Khalgui, M.: Reconfigurable CAN in real-time embedded platforms. In: Proceedings of the 11th International Conference on Informatics in Control, Automation and Robotics (ICINCO), Austria, vol. 01, pp. 3355–3362 (2014)

    Google Scholar 

  6. Khemaissia, I., Mosbahi, O., Khalgui, M.: New automatic agent-based solutions for feasible reconfigurable MP-SoC architectures. In: Proceedings of the 14th International Conference on Application of Concurrency to System Design, Tunis, pp. 152–158 (2014)

    Google Scholar 

  7. Wu, N.Q., Zhou, M.C., Li, Z.W.: Short-term scheduling of crude-oil operations: petri net-based control-theoretic approach. IEEE Robot. Autom. Mag. 22(2), 64–76 (2015)

    Article  Google Scholar 

  8. Zhang, J.F., Khalgui, M., Li, Z.W., Frey, G., Mosbahi, O., Salah, H.B.: Reconfigurable coordination of distributed discrete event control systems. IEEE Trans. Control Syst. Technol. 23(1), 323–330 (2015)

    Article  Google Scholar 

  9. Javaid, H., Shafique, M., Henkel, J., Parameswaran, S.: System-level application-aware dynamic power management in adaptive pipelined MPSoCs for multimedia. In: Computer-Aided Design, San Jose, CA, pp. 616–623 (2011)

    Google Scholar 

  10. Gharsellaoui, H., Khalgui, M., Ben Ahmed, S.: New optimal preemptively scheduling for real-time reconfigurable sporadic tasks based on earliest deadline first algorithm. Int. J. Adv. Pervasive Ubiquit. Comput. IJAPUC 4(2), 65–81 (2012)

    Article  Google Scholar 

  11. George, L., Courbin, P.: Reconfiguration of uniprocessor sporadic real-time systems: the sensitivity approach. In: IGI-Global Knowledge on Reconfigurable Embedded Control Systems, pp. 167–189 (2011)

    Google Scholar 

  12. Khalgui, M., Mosbahi, O., Li, Z.W., Hanisch, H.-M.: Reconfiguration of distributed embedded-control systems. IEEE/ASME Trans. Mechatron. 16(4), 684–694 (2011)

    Article  MATH  Google Scholar 

  13. Khalgui, M., Mosbahi, O., Li, Z.W., Hanisch, H.-M.: Reconfigurable multi-agent embedded control systems: from modeling to implementation. IEEE Trans. Comput. 60(4), 538–551 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Khalgui, M., Gharbi, A.: New solutions for feasible and coherent reconfigurations of multi-agent embedded software architectures. J. Ubiquit. Comput. Pervasive Netw. JUSPN 1(1), 19–28 (2010)

    Google Scholar 

  15. Khalgui, M., Mosbahi, O., Li, Z.W.: Runtime reconfigurations of embedded controllers. ACM Trans. Embedded Comput. Syst. 12(14) (2013)

    Google Scholar 

  16. Khalgui, M., Hanisch, H.M.: Reconfiguration protocol for multi-agent control software architectures. IEEE Trans. Syst. Man Cybern. Part C 41(1), 70–80 (2011)

    Article  Google Scholar 

  17. Ben Atitallah, R., Senn, E., Chillet, D., Lanoe, M., Blouin, D.: An efficient framework for power-aware design of heterogeneous MPSoC. IEEE Trans. Industr. Inform. 9(1), 487–501 (2013)

    Article  Google Scholar 

  18. Baker, T.: Stack-based scheduling of real-time processes. J. Real-Time Syst. 3(1), 67–99 (1991)

    Article  Google Scholar 

  19. Chetto, H., Chetto, M.: Some results of the earliest deadline scheduling algorithm. IEEE Trans. Softw. Eng. 15(10), 1261–1269 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  20. Coffman, E.G., Csirik, J., Galambos, M., Martello, S., Vigo, D.: Bin packing approximation algorithms: survey and classification, pp. 46–93. Springer, New York (2013). ISBN: 978-1-4419-7996-4. Edited by Hochbaum, D.S

    Chapter  Google Scholar 

  21. Decreasing Algorithms. http://www.developerfusion.com/article/5540/bin-packing/6/

  22. Albers, S., Mitzenmacher, M.: Average-case analyses of first fit and random fit bin packing. In: Proceedings of the Ninth Annual ACM-SIAM Symposium on Discrete algorithms, pp. 290–299 (1998)

    Google Scholar 

  23. Davis, T.: Bin packing, 29 November 2006. http://www.geometer.org/mathcircles

  24. Ndoye, F., Sorel, Y.: Preemptive multiprocessor real-time scheduling with exact preemption cost. In: 5th Junior Researcher Workshop on Real-Time Computing, France (2011)

    Google Scholar 

  25. Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a hard real time environment. J. Assoc. Comput. Mach. 20(1), 46–61 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  26. Singhoff, F., Legrand, J., Nana, L., Marce, L.: Cheddar: a flexible real time scheduling framework. In: Association for Computing Machinery, pp. 1–8 (2004)

    Article  Google Scholar 

  27. Chattopadhyay, S.: Embedded System Design. PHI Learning Pvt. Ltd., Delhi (2013). ISBN-8120347307

    Google Scholar 

  28. Burns, A., Gutierrez, M., Rivas, M.A., Harbour, M.G.: A deadline-floor inheritance protocol for EDF scheduled embedded real-time systems with resource sharing. IEEE Trans. Comput. 64(5), 1241–1253 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ahmad, B., Arslan, T.: Dynamically reconfigurable NoC for reconfigurable MPSoC. In: Custom Integrated Circuits Conference, San Jose, CA, pp. 277–280 (2005)

    Google Scholar 

  30. Holzenspies, P.K.F., Smit, G.J.M., Kuper, J.: Mapping streaming applications on a reconfigurable MPSoC platform at run-time. In: International Symposium System-on-Chip, Tampere, pp. 1–4 (2007)

    Google Scholar 

  31. Samahi, A., Bourennane, E.: Automated integration and communication synthesis of reconfigurable MPSoC platform. In: Second NASA/ESA Conference on Adaptive Hardware and Systems, Edinburgh, pp. 379–385 (2007)

    Google Scholar 

  32. Ahmad, B., Erdogan, A.T., Khawam, S.: Architecture of a dynamically reconfigurable NoC for adaptive reconfigurable MPSoC. In: First NASA/ESA Conference on Adaptive Hardware and Systems, Istanbul, pp. 405–411 (2006)

    Google Scholar 

  33. Sepulveda, J., Pires, R., Gogniat, G., Jiang Chau, W., Strum1, M.: QoSS hierarchical NoC-based architecture for MPSoC dynamic protection. Int. J. Reconfigurable Comput. 2012(3) (2012)

    Article  Google Scholar 

  34. Thramboulidis, K., Doukas, G., Frantzis, A.: Towards an implementation model for FB-based reconfigurable distributed control applications. In: Proceedings of the Seventh International Symposium on Object-Oriented Real-Time Distributed Computing, Vienna, pp. 193–200 (2004)

    Google Scholar 

  35. Lipari, G., Buttazzo, G.: Schedulability analysis of periodic and aperiodic tasks with resource constraints. J. Syst. Archit. 46(4), 327–338 (2000)

    Article  Google Scholar 

  36. Quan, G., Hu, X.S.: Minimal energy fixed-priority scheduling for variable voltage processors. IEEE Trans. Comput.-Aided. Des. Integr. Circuits Syst. 22(8), 1062–1071 (2003)

    Article  Google Scholar 

  37. Buttazzo, G.C., Bertogna, M., Yao, G.: Limited preemptive scheduling for real-time systems. a survey. IEEE Trans. Industr. Inform. 9(1), 3–15 (2013)

    Article  Google Scholar 

  38. Spuri, M., Buttazzo, G.: Efficient aperiodic service under the earliest deadline scheduling. In: Proceedings of IEEE Real-Time Systems Symposium, pp. 2–11, December 1994

    Google Scholar 

  39. Spuri, M., Buttazzo, G.: Scheduling aperiodic tasks in dynamic priority systems. Real-Time Syst. 10, 179–210 (1996)

    Article  Google Scholar 

  40. Bui, B.D., Pellizzoni, R., Caccamo, M.: Real-time scheduling of concurrent transactions in multi-domain ring buses. IEEE Trans. Comput. 61(9), 1311–1324 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  41. Santos, P.C., Nazar, G.L., Anjam, F., Wong, S., Matos, D., Carro, L.: Fully dynamic reconfigurable NoC-based MPSoC: the advantages of total reconfiguration. In: 7th HiPEAC Workshop on Reconfigurable Computing, Berlin, Germany (2013)

    Google Scholar 

  42. Bobda, C., Ahmadinia, A.: Dynamic interconnection of reconfigurable modules on reconfigurable devices. Des. Test Comput. 22(5), 443–451 (2005)

    Article  Google Scholar 

  43. Ishihara, T.: A multi-performance processor for reducing the energy consumption of real-time embedded systems. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 93, 2533–2541 (2010)

    Article  Google Scholar 

  44. Ghazalie, T.M., Baker, T.P.: Aperiodic servers in a deadline scheduling environment. Real-Time Systems, Department of Computer Science, Florida State University, Tallahassee, vol. 9, pp. 31–67 (1995)

    Article  Google Scholar 

  45. Mishra, D., Samei, Y., Dang, N., Dömer, R., Bozorgzadeh, E.: Multi-layer configuration exploration of MPSoCs for streaming applications. In: Electronic System Level Synthesis Conference (ESLsyn) (2012)

    Google Scholar 

  46. Hansson, A., Goossens, K.: Trade-offs in the configuration of a network on chip for multiple use-cases. In: Proceedings of International Symposium on Networks on Chip (NOCS), Princeton, NJ, pp. 233–242 (2007)

    Google Scholar 

  47. Ching, D., Schaumont, P., Verbauwhede, I.: Integrated modelling and generation of a reconfigurable network-on-chip. Int. J. Embedded Syst. 1(3/4), 218–227 (2005)

    Article  Google Scholar 

  48. Stensgaard, M.B., Sparso, J.: Renoc: a network-on-chip architecture with reconfigurable topology. In: Second ACM/IEEE International Symposium on Networks-on-Chip, pp. 55–64, April 2008

    Google Scholar 

  49. Vallina, F.M., Jachimiec, N., Saniie, J.: Nova interconnect for dynamically reconfigurable NoC systems. In: IEEE Electro/Information Technology, pp. 9546–9550, May 2007

    Google Scholar 

  50. Bobda, C., Ahmadinia, A., Majer, M., Teich, J., Fekete, S., van der Veen, J.: Dynoc : a dynamic infrastructure for communication in dynamically reconfugurable devices. In: Field Programmable Logic and Applications, pp. 153–158, August 2005

    Google Scholar 

  51. Hajduk, Z., Trybus, B., Sadolewski, J.: Architecture of FPGA embedded multiprocessor programmable controller. IEEE Trans. Industr. Electron. 62(5), 2952–2961 (2015)

    Article  Google Scholar 

  52. Salehi, M., Ejlali, A.: A Hardware platform for evaluating low-energy multiprocessor embedded systems based on COTS devices. IEEE Trans. Industr. Electron. 62(2), 1262–1269 (2015)

    Article  Google Scholar 

  53. Obaid, Z.-A., Sulaiman, A., Hamidon, M.: FPGA-based implementation of digital logic design using altera DE2 board. Int. J. Comput. Sci. Netw. Secur. 9(8), 186–194 (2009)

    Google Scholar 

  54. Altera, Getting started with Quartus II Simulation Using the ModelSim-Altera Software. https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/ug/ug_gs_msa_qii.pdf

  55. Altera, Sopc Builder User Guide. https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/ug/ug_sopc_builder.pdf

  56. Altera, Nios II Processor. https://www.altera.com/products/processors/overview.html

  57. http://www.cynapsys.de/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imen Khemaissia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Khemaissia, I., Mosbahi, O., Khalgui, M., Li, Z. (2017). CRMPSoC: New Solution for Feasible Reconfigurable MPSoC. In: Cabello, E., Cardoso, J., Ludwig, A., Maciaszek, L., van Sinderen, M. (eds) Software Technologies. ICSOFT 2016. Communications in Computer and Information Science, vol 743. Springer, Cham. https://doi.org/10.1007/978-3-319-62569-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62569-0_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62568-3

  • Online ISBN: 978-3-319-62569-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics