Skip to main content

Literature-Based Discovery

  • Chapter
  • First Online:
Representing Scientific Knowledge
  • 1462 Accesses

Abstract

Literature-Based Discovery (LBD) refers to a range of approaches that take a body of scientific literature as the input, apply a series of computational, manual, or a hybrid processes, and finally generate hypotheses that are potentially novel and meaningful for further investigations. This chapter introduces the origin of LBD, its major landmark studies, available tools, and resources. In particular, we explain the design and application of PKD4J to illustrate the principles and analytic decisions one typically needs to make. We highlight the recent developments in this area and outline remaining challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 74.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://d3js.org/.

  2. 2.

    http://brat.nlplab.org/features.html.

  3. 3.

    http://arrowsmith.psych.uic.edu.

  4. 4.

    http://arnika.mf.uni-lj.si/pls/bitola2/bitola.

  5. 5.

    http://pubannotation.org/.

References

  • Baek SH, Lee D, Kim M, Lee JH, Song M (2017) Enriching plausible new hypothesis generation in PubMed. PLoS ONE 12(7):e0180539

    Article  Google Scholar 

  • Cameron D, Bodenreider O, Yalamanchili H, Danh T, Vallabhaneni S, Thirunarayan K, Sheth AP, Rindflesch TC (2013) A graph-based recovery and decomposition of Swanson’s hypothesis using semantic predications. J Biomed Inform 46:238–251. doi:10.1016/j.jbi.2012.09.004

  • Che Z, Kale D, Li W, Bahadori MT, Liu Y (2015) Deep computational phenotyping. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp 507–516 (ACM, 2015)

    Google Scholar 

  • Cohen T, Whitefield GK, Schvaneveldt RW, Mukund K, Rindflesch T (2010) EpiphaNet: an interactive tool to support biomedical discoveries. J Biomed Discov Collab 5:21–49

    Google Scholar 

  • Cohen WW, Ravikumar P, Fienberg SE (2003) A comparison of string metrics for matching names and records. In: Paper Presented at the International Conference on Knowledge Discovery and Data Mining (KDD) 09, Workshop on Data Cleaning, Record Linkage, and Object Consolidation

    Google Scholar 

  • DiGiacomo RA, Kremer JM, Shah DM (1989) Fish-oil dietary supplementation in patients with Raynaud’s pheomenon: a double blind, controlled, prospective study. Am J Med 86:158–164

    Google Scholar 

  • Hristovski D, Peterlin B, Džeroski S, Stare J (2001) Literature based discovery support system and its application to disease gene identification. In: Proceeding AMIA Symposium 928

    Google Scholar 

  • Hristovski D, Peterlin B, Mitchell JA, Humphrey SM (2003) Improving literature based discovery support by genetic knowledge integration. Stud Health Technol Inform 95:68–73

    Google Scholar 

  • Lindsay RK, Gordon MD (1999) Literature-based discovery by lexical statistics. J Am Soc Inf Sci 50(7):574–587

    Google Scholar 

  • Malhotra A, Younesi E, Gurulingappa H, Hofmann-Apitius M (2013) ‘HypothesisFinder:’ a strategy for the detection of speculative statements in scientific text. PLoS Comput Biol 9(7):e1003117. doi:10.1371/journal.pcbi.1003117

  • Manning CD, Surdeanu M, Bauer J, Finkel J, Bethard SJ, McClosky D (2014) The stanford CoreNLP natural language processing toolkit. In: Proceedings of 52nd Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pp 55–60

    Google Scholar 

  • Pratt W, Yetisgen-Yildiz M (2003) LitLinker: capturing connections across the biomedical literature, K-CAP’03, pp 105–112, Sanibel Island, FL, 23–25 Oct 2003

    Google Scholar 

  • Rather NN, Patel CO, Khan SA (2017) Using deep learning towards biomedical knowledge discovery. Int J Math Sci Comput (IJMSC) 3(2):1–10. doi:10.5815/ijmsc.2017.02.01

  • Song M, Kim WC, Lee DH, Heo GE, Kang KY (2015) PKDE4J: entity and relation extraction for public knowledge discovery. J Biomed Inform 57:320–332

    Google Scholar 

  • Spangler S, Wilkins AD, Bachman BJ, Nagarajan M, Dayaram T, Haas P, Regenbogen S, Pickering CR, Comer A, Myers JN, Stanoi I, Kato L, Lelescu A, Labrie JJ, Parikh N, Lisewski AM, Donehower L, Chen Y, Lichtarge O (2014) Automated hypothesis generation based on mining scientific literature. In: Paper Presented at the Proceedings of the 20th ACM SIGKDD International Conference on Knowledge discovery and data mining, New York, NY, USA

    Google Scholar 

  • Srinivasan P (2004) Text mining: generating hypotheses from MEDLINE. J Am Soc Inf Sci 55(4):396–413

    Google Scholar 

  • Swanson DR (1986a) Fish oil, Raynaud’s syndrome, and undiscovered public knowledge. Perspect Biol Med 30:7–18

    Google Scholar 

  • Swanson DR (1986b) Undiscovered public knowledge. Libr Q 56(2):103–118

    Google Scholar 

  • Swanson DR (1988) Migraine and magnesium: eleven neglected connections. Perspect Biol Med 31(4):526–557

    Google Scholar 

  • Swanson DR, Smalheiser NR (1997) An interactive system for finding complementary literatures: a stimulus to scientific discovery. Artif Intell 91:183–203

    Google Scholar 

  • van der Eijk C, Van Mulligen E, Kors JA, Mons B, Van den Berg J (2004) Constructing an associative concept space for literature-based discovery. J Am Soc Inf Sci Technol 55(5):436–444

    Google Scholar 

  • Weeber M, Vos R, Klein H, de Jong-Van den Berg LT, Aronson AR, Molema G (2003) Generating hypotheses by discovering implicit associations in the literature: a case report for new potential therapeutic uses for Thalidomide. J Am Med Inf Assoc 10(3):252–259

    Google Scholar 

  • Wilkowski B, Fiszman M, Miller CM, Hristovski D, Arabandi S, Rosemblat G, Rindflesh TC (2011) Graph-based methods for discovery browsing with semantic predications. In: AMIA Annual Symposium Proceedings, pp 1514–1523

    Google Scholar 

  • Wren JD, Bekeredjian R, Stewart JA, Shohet RV, Garner HR (2004) Knowledge discovery by automated identification and ranking of implicit relationships. Bioinformatics 20(3):389–398

    Google Scholar 

  • Žitnik M, Janjić V, Larminie C, Zupan B, Pržulj N (2013) Discovering disease-disease associations by fusing systems-level molecular data. Sci Rep 3

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, C., Song, M. (2017). Literature-Based Discovery. In: Representing Scientific Knowledge. Springer, Cham. https://doi.org/10.1007/978-3-319-62543-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62543-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62541-6

  • Online ISBN: 978-3-319-62543-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics