Skip to main content

A Reinforcement Learning Based Approach to Multiple Sequence Alignment

  • Conference paper
  • First Online:
Soft Computing Applications (SOFA 2016)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 634))

Included in the following conference series:

Abstract

Multiple sequence alignment plays an important role in comparative genomic sequence analysis, being one of the most challenging problems in bioinformatics. This problem refers to the process of arranging the primary sequences of DNA, RNA or protein to identify regions of similarity that may be a consequence of functional, structural or evolutionary relationships between the sequences. In this paper we tackle multiple sequence alignment from a computational perspective and we introduce a novel approach, based on reinforcement learning, for addressing it. The experimental evaluation is performed on several DNA data sets, two of which contain human DNA sequences. The efficiency of our algorithm is shown by the obtained results, which prove that our technique outperforms other methods existing in the literature and which also indicate the potential of our proposal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agarwal, P.: Alignment of multiple sequences using GA method. Int. J. Emerg. Technol. Comput. Appl. Sci. (IJETCAS) 13–177, 412–421 (2013)

    Google Scholar 

  2. Carroll, H., Beckstead, W., O’Connor, T., Ebbert, M., Clement, M., Snell, Q., McClellan, D.: Dna reference alignment benchmarks based on teritary structure of encoded proteins. Bioinformatics 23(19), 2648–2649 (2007)

    Article  Google Scholar 

  3. Chao, L., Shuai, L.: The research on DNA multiple sequence alignment based on adaptive immune genetic algorithm. In: International Conference on Electronics and Optoelectronics (ICEOE), vol. 3, pp. V3–75–V3–78, July 2011

    Google Scholar 

  4. Chen, S.M., Lin, C.H.: Multiple DNA sequence aalignment based on genetic algorithms and divide-and-conquer techniques. Int. J. Appl. Sci. Eng. 3, 89–100 (2005)

    Google Scholar 

  5. Chen, S.M., Lin, C.H.: Multiple DNA sequence alignment based on genetic simulated annealing techniques. Inf. Manag. Sci. 18, 97–111 (2007)

    MATH  Google Scholar 

  6. Chen, Y., Pan, Y., Chen, L., Chen, J.: Partitioned optimization algorithms for multiple sequence alignment. In: Proceedings of the 20th International Conference on Advanced Information Networking and Applications, pp. 618–622 (2006)

    Google Scholar 

  7. Czibula, I., Bocicor, M., Czibula, G.: A software framework for solving combinatorial optimization tasks. Studia Universitatis “Babes-Bolyai”, Informatica, LVI, 3–8 (2011). Proceedings of KEPT 2011, Special Issue

    Google Scholar 

  8. Dayan, P., Sejnowski, T.: TD(\(\lambda \)) converges with probability 1. Mach. Learn. 14, 295–301 (1994)

    Google Scholar 

  9. Eger, S.: Sequence alignment with arbitrary steps and further generalizations, with applications to alignments in linguistics. Inf. Sci. 237, 287–304 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. EMBL-EBI, The european bioinformatics institute. http://www.ebi.ac.uk/about

  11. Gotoh, O.: An improved algorithm for matching biological sequences. J. Mol. Biol. 162, 705–708 (1982)

    Article  Google Scholar 

  12. Kanz, C., Aldebert, P., Althorpe, N., et al.: The EMBL nucleotide sequence database. Nucleic Acids Res. 36, D29–D33 (2005)

    Google Scholar 

  13. Katoh, S.: MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013)

    Article  Google Scholar 

  14. Larkin, M., Blackshields, G., Brown, N., Chenna, R., McGettigan, P., McWilliam, H., Valentin, F., Wallace, I., Wilm, A., Lopez, R., Thompson, J., Gibson, T., Higgins, D.: ClustalW and clustalX version 2.0. Bioinformatics 23(21), 2947–2948 (2007)

    Article  Google Scholar 

  15. Lipman, D., Altschul, S., Kececioglu, J.: A tool for multiple sequence alignment. Proc. Natl. Acad. Sci. U.S.A. 86, 4412–4415 (1989)

    Article  Google Scholar 

  16. Mircea, I., Bocicor, M., Dîncu, A.: On reinforcement learning based multiple sequence alignment. Studia Universitatis “Babes-Bolyai”, Informatica LIX, 50–65 (2014)

    Google Scholar 

  17. Nasser, S., Vert, G., Nicolescu, M., Murray, A.: Multiple sequence alignment using fuzzy logic. In: Proceedings of the IEEE Symposium on Computational Intelligence and Bioinformatics and Computational Biology, pp. 304–311 (2007)

    Google Scholar 

  18. Needleman, S., Wunsch, C.: A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48(3), 443–453 (1970)

    Article  Google Scholar 

  19. Nelwamondo, F.V., Golding, D., Marwala, T.: A dynamic programming approach to missing data estimation using neural networks. Inf. Sci. 237, 49–58 (2013)

    Article  MathSciNet  Google Scholar 

  20. Nguyen, H., Yoshihara, I., Yamamori, K., Yasunaga, M.: Neural networks, adaptive optimization, and RNA secondary structure prediction. In: Proceedings of the 2002 Congress on Evolutionary Computation, CEC 2002, pp. 309–314 (2002)

    Google Scholar 

  21. Nizam, A., Shanmugham, B., Subburaya, K.: Self-organizing genetic algorithm for multiple sequence alignment. Glob. J. Comput. Sci. Technol. 11(7) (2011)

    Google Scholar 

  22. Rasmussen, T., Krink, T.: Improved hidden Markov model training for multiple sequence alignment by a particle swarm optimization-evolutionary algorithm hybrid. BioSystems 72, 5–17 (2003)

    Article  Google Scholar 

  23. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (1998)

    Google Scholar 

  24. Thompson, J.D., Linard, B., Lecompte, O., Poch, O.: A comprehensive benchmark study of multiple sequence alignment methods: current challenges and future perspectives. PLoS ONE 6(3), e18093+ (2011)

    Article  Google Scholar 

  25. Wang, L., Jiang, T.: On the complexity of multiple sequence alignment. Comput. Biol. 4, 337–348 (1994)

    Article  Google Scholar 

  26. Xiang, X., Zhang, D., Qin, J., Yuanyuan, F.: Ant colony with genetic algorithm based on planar graph for multiple sequence alignment. Inf. Technol. J. 9(2), 274–281 (2010)

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by a grant of the Romanian National Authority for Scientific Research, CNCS-UEFISCDI, project number PN-II-RU-TE-2014-4-0082.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ioan-Gabriel Mircea , Iuliana Bocicor or Gabriela Czibula .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Mircea, IG., Bocicor, I., Czibula, G. (2018). A Reinforcement Learning Based Approach to Multiple Sequence Alignment. In: Balas, V., Jain, L., Balas, M. (eds) Soft Computing Applications. SOFA 2016. Advances in Intelligent Systems and Computing, vol 634. Springer, Cham. https://doi.org/10.1007/978-3-319-62524-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62524-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62523-2

  • Online ISBN: 978-3-319-62524-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics