Skip to main content

Deep Learning Tools for Human Microbiome Big Data

  • Conference paper
  • First Online:
Soft Computing Applications (SOFA 2016)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 633))

Included in the following conference series:

Abstract

Deep Learning is a branch of Machine Learning, which focuses on a set of algorithms that model high-level abstractions in data by using a deep representation of multiple processing layers. The goal of Machine Learning is to map input patterns to output values. This paper will suggest a potential application of Deep Learning Algorithms for the analysis of large amounts of data produced by the research of the Human Microbiome. Humans have coevolved with microbes in the environment, and each body habitat has a unique set of microorganisms (microbiota). The most abundant and well-studied microbiota are found in the gut, where the bacterial density reaches 1011–1012 cells/g in the distal human colon. The number of bacteria in the human gut has been estimated to exceed the number of somatic cells in the body by an order of magnitude and that the biomass of the gut microbiota may reach up to 1.5 kg. This paper presents different methods that have been implemented and tested on a Human Microbiome Dataset. Besides the findings concerning accuracy and runtime, the results suggest that the Deep Learning algorithms could be successfully used to analyze large amounts of Microbiota data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Nets 61, 85–117 (2015)

    Article  Google Scholar 

  2. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  3. Bhattacherjee, A., Sourav, R., Sneha, P., Pazel, R., Noreen, K., Nilanjan, D.: Classification approach for breast cancer detection using back propagation neural network: a study. In: Biomedical Image Analysis and Mining Techniques for Improved Health Outcomes, p. 12 (2016). doi:10.4018/978-1-4666-8811-7

  4. Hore, S., et al.: Real time dactylology based selective image encryption using speeded up robust features extraction technique and artificial neural network. In: Image Feature Detectors Foundations, Innovations, and Applications. Studies in Computational Intelligence series (2015)

    Google Scholar 

  5. Samanta, S., et al.: Haralick features based automated glaucoma classification using back propagation neural network. In: Proceedings of the 3rd International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA), vol. 327 (2014)

    Google Scholar 

  6. Geman, O.: Nonlinear dynamics, artificial neural networks and neuro-fuzzy classifier for automatic assessing of tremor severity. In: E-Health and Bioengineering Conference (EHB), pp. 1–4 (2013)

    Google Scholar 

  7. Geman, O., Costin, H.: Automatic assessing of tremor severity using nonlinear dynamics, artificial neural networks and neuro-fuzzy classifier. Adv. Electr. Comput. Eng. 14(1), 133–138 (2014)

    Article  Google Scholar 

  8. Geman, O., Sanei, S., Chiuchisan, I., Graur, A., Prochazka, A., Vysata, O.: Towards an inclusive Parkinson’s screening system. In: Proceedings of the International Conference on System Theory, Control and Computing, pp. 476–480 (2014)

    Google Scholar 

  9. Human Microbiome Project (2016). https://commonfund.nih.gov/hmp/overview

  10. Samuel, B.S., Shaito, A., Motoike, T., Rey, F.E., Backhed, F., Manchester, J.K., Hammer, R.E., Williams, S.C., Crowley, J., Yanagisawa, M., Gordon, J.I.: Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proc. Nat. Acad. Sci. 105, 16767–16772 (2008)

    Article  Google Scholar 

  11. Swartz, T.D., Duca, F.A., De Wouters, T., Sakar, Y., Covasa, M.: Upregulation of intestinal type 1 taste receptor 3 and sodium glucose luminal transporter-1 expression and increased sucrose intake in mice lacking gut microbiota. Br. J. Nutr. 107, 621–630 (2012)

    Article  Google Scholar 

  12. Duca, F.A., Covasa, M.: Current and emerging concepts on the role of peripheral signals in the control of food intake and development of obesity. Br. J. Nutr., 1–16 (2012)

    Google Scholar 

  13. Fettweis, J.M., Brooks, J.P., Serrano, M.G., Sheth, N.U., Vladimir, J.: Microbiology (Reading, England) (2014)

    Google Scholar 

  14. Eren, A., Murat, A., Borisy, G.G., Huse, S.M., Mark Welch, J.: Oligotyping analysis of the human oral microbiome. In: Proceedings of the National Academy of Sciences of the United States of America (2014)

    Google Scholar 

  15. Ma, L., Jungwoo, K., Hatzenpichler, R., Karymov, M.A., Hubert, N., Hanan, I.M., Chang, E.B., Ismagilov, R.F.: Gene-targeted microfluidic cultivation validated by isolation of a gut bacterium listed in Human Microbiome Project’s Most Wanted taxa. In: Proceedings of the National Academy of Sciences of the United States of America, pp. 9768–9773 (2014)

    Google Scholar 

  16. Rooks, M.G., Veiga, P., Wardwell-Scott, L.H., Tickle, T., Segata, N., Michaud, M., Gallini, C.A., Beal, C., Van Hylckama-Vlieg, J.E.T., Ballal, S.A., Morgan, X.C., Glickman, J.N., Huttenhow, D.G.: Gut microbiome composition and function in experimental colitis during active disease and treatment-induced remission. ISME J. 1403–1417 (2014)

    Google Scholar 

  17. Spinler, J.F., Sontakke, A., Hollister, E.B., Venable, S.F., Phaik, L., Balderas, M.A., Saulnier, D.M.A., Mistretta, T.A., Devaraj, S., Walter, J., Versalovic, J., Highlander, S.K.: From prediction to function using evolutionary genomics: human-specific ecotypes of Lactobacillus reuteri have diverse probiotic functions. Genome Biol. Evol. 1772–1789 (2014)

    Google Scholar 

  18. Ma, L., Datta, S.S., Karymov, M.A., Pan, Q., Begolo, S., Ismagilov, R.F.: Individually addressable arrays of replica microbial cultures enabled by splitting SlipChips. Integr. Biol.: Quant. Biosci. Nano Macro (2014)

    Google Scholar 

  19. Huttenhower, C., Kostic, A.D., Xavier, R.: Inflammatory bowel disease as a model for translating the microbiome. Immunity, 843–854 (2014)

    Google Scholar 

  20. Franzosa, E.A., Xuan Zhang, X.C.: The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. Nat. Med. (2015)

    Google Scholar 

  21. D’Argenio, V., Salvatore, F.: The role of the gut microbiome in the healthy adult status. Clin. Chim. Acta (2015)

    Google Scholar 

  22. Mandal, S., et al.: Analysis of composition of microbiomes: a novel method for studying microbial composition. Microb. Ecol. Health Dis. 26, 1–7 (2015)

    Google Scholar 

  23. He, C., Shan, Y., Song, W.: Targeting gut microbiota as a possible therapy. Nutr. Res. 35, 361–367 (2015)

    Article  Google Scholar 

  24. Le Barz, M., Anhe, F.E., Varin, T., et al.: Probiotics as complementary treatment for metabolic disorders. Diab. Metab. J. 39, 291–303 (2015)

    Article  Google Scholar 

  25. Wu, Y., Ding, Y., Tanaka, Y.: Risk factors contributing to type 2 diabetes and recent advances in the treatment and prevention. Int. J. Med. Sci. 11, 1185–1200 (2014)

    Article  Google Scholar 

  26. Tremaroli, V., Backhed, F.: Functional interactions between the gut microbiota and host metabolism. Nature 489, 242–249 (2012)

    Article  Google Scholar 

  27. Everard, A., Cani, P.: Diabetes, obesity and gut microbiota. Best Pract. Res. Clin. Gastroenerol. 27, 73–83 (2013)

    Article  Google Scholar 

  28. Apostolescu, C., Moroti, R., Molagic, V., et al.: Gut microbiota and its complex role, the experience of the National Institute for Infectious Diseases “Prof. Dr. Matei Balş” in fecal bacteriotherapy for Clostridium difficile infection. BMC Infect. Dis. 13(Suppl. 1), O19 (2013)

    Article  Google Scholar 

  29. Geman, O., Chiuchisan, I., Covasa, M.: Data mining and knowledge discovery tools for human microbiome big data. In: Proceedings of IEEE - International Conference on Computers Communications and Control, Oradea, Romania, 10–14 May (2016)

    Google Scholar 

  30. Geman, O.: Data mining tools used in deep brain stimulation – analysis results. In: Artificial Intelligence Applications and Innovations. IFIP Advances in Information and Communication Technology Series, vol. 364, pp. 259–264. Springer, Heidelberg (2011)

    Google Scholar 

  31. Geman, O., Turcu, C.: Partitioning methods used in DBS treatments analysis results. In: Proceedings of International Joint Conference on Neural Networks, San Jose, California, USA, pp. 1788–1793 (2011)

    Google Scholar 

  32. Lungu, M.M., Bosancu, A., Geman, O.: Mini-review: human microbiome project – recent trends and future challenges. In: Proceedings of IEEE International Conference on E-Health and Bioengineering (EHB 2015), pp. 1–4 (2015)

    Google Scholar 

  33. Bucerzan, D., Raţiu, C.: Image processing with android steganography. In: Soft Computing Application, Proceedings of 6th International Workshop on Soft Computing Applications (SOFA 2014). Advances in Intelligent Systems and Computing, vol. 1, pp. 27–36. Springer International Publishing, Cham (2014). doi:10.1007/978-3-319-27179-8. eBook ISBN 978-3-319-18296-4, ISBN 978-3-319-27178-1

  34. Bucerzan, D., Raţiu, C.: Contributions to steganographic techniques on mobile devices. In: Innovative Security Solutions for Information Technology and Communications. Lecture Notes in Computer Science, vol. 9522, pp. 242–252. Springer International Publishing, Cham (2016). doi:10.1007/978-3-319-27179. eBook ISBN 978-3-319-27179-8, ISBN 978-3-319-27178-1

  35. Raţiu, C., Bucerzan, D., Manolescu, M.J.: SmartSteg: a new android based steganography application. Int. J. Comput. Commun. Control 8(5), 681–688 (2013). ISSN 1841-9836

    Article  Google Scholar 

  36. Project: Analysis of novel risk factors influencing control of food intake and regulation of body weight. (PN-II-ID-PCE-2012-4-0608 no. 48/02.09.2013) (2016). www.eed.usv.ro/idei_48

Download references

Acknowledgement

This work was supported by the Romanian National Program (PN-II-ID-PCE-2012-4-0608 no. 48/02.09.2013), “Analysis of novel risk factors influencing control of food intake and regulation of body weight” [36].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oana Geman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Geman, O., Chiuchisan, I., Covasa, M., Doloc, C., Milici, MR., Milici, LD. (2018). Deep Learning Tools for Human Microbiome Big Data. In: Balas, V., Jain, L., Balas, M. (eds) Soft Computing Applications. SOFA 2016. Advances in Intelligent Systems and Computing, vol 633. Springer, Cham. https://doi.org/10.1007/978-3-319-62521-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62521-8_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62520-1

  • Online ISBN: 978-3-319-62521-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics