Skip to main content

Pathology of Neuroendocrine Neoplasms: Morphological, Immunophenotypical, and Circulating Molecular Markers

  • Chapter
  • First Online:
Atlas of Thyroid and Neuroendocrine Tumor Markers

Abstract

Neuroendocrine neoplasms (NENs) are a heterogeneous group of epithelial neoplastic proliferations arising in a large number of body organs, although most cases arise in the bronchopulmonary and gastroenteropancreatic (GEP) systems. Irrespective of their primary site, neoplastic cells share features of neural and endocrine differentiation and neoplasms encompass a wide spectrum of entities, from very indolent well-differentiated neuroendocrine tumors (NETs) to highly aggressive neuroendocrine carcinomas (NECs). They represent a challenge for oncologists and pathologists and a correct diagnostic approach is crucial for the management of patients. Indeed, although the diagnosis of GEP and lung NENs is generally simple in routine practice, there are critical aspects that need to be taken into account during the diagnostic workup. The most challenging tasks include the difficulty in achieving the correct prognostic evaluation of NETs by recognizing their metastatic/aggressive potential and the identification of NECs. To this aim, a comprehensive clinical, morphological, immunohistochemical, and molecular investigation represents the most reliable tool for pathologists. The present chapter examines current approaches to the diagnosis and prognostic classification of GEP and lung NENs, focusing on the classification and the critical use of morphological parameters, immunohistochemical stainings, and molecular markers in the pathology workup.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Rindi G, Bordi C, La Rosa S, Solcia E, Delle Fave G. Gastroenteropancreatic (neuro)endocrine neoplasms: the histology report. Dig Liv Dis. 2011;43S:S356–S60.

    Article  Google Scholar 

  2. Yao JC, Hassan M, Phan A, Dagohoy C, Leary C, Mares JE, Abdalla EK, Fleming JB, Vauthey JN, Rashid A, Evans DB. One hundred years after “carcinoid”: epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. J Clin Oncol. 2008;26:3063–72.

    Article  PubMed  Google Scholar 

  3. Travis WD, Brambilla E, Burke AP, Marx A, Nicholson AG. WHO classification of tumours of the lung, pleura, thymus and heart. 4th ed. Lyon: IARC; 2015.

    Google Scholar 

  4. Rindi G, Arnold R, Bosman FT, Capella C, Klimstra DS, Klöppel G, Komminoth P, Solcia E. Nomenclature and classification of neuroendocrine neoplasms of the digestive system. In: Bosman FT, Carneiro F, Hruban RH, Theise ND, editors. WHO classification of tumours of the digestive system. 4th ed. Lyon: IARC Press; 2010. p. 13–4.

    Google Scholar 

  5. Yachida S, Vakiani E, White CM, Zhong Y, Saunders T, Morgan R, de Wilde RF, Maitra A, Hicks J, Demarzo AM, Shi C, Sharma R, Laheru D, Edil BH, Wolfgang CL, Schulick RD, Hruban RH, Tang LH, Klimstra DS, Iacobuzio-Donahue CA. Small cell and large cell neuroendocrine carcinomas of the pancreas are genetically similar and distinct from well-differentiated pancreatic neuroendocrine tumors. Am J Surg Pathol. 2012;36:173–84.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Esposito I, Segler A, Steiger K, Klöppel G. Pathology, genetics and precursors of human and experimental pancreatic neoplasms: an update. Pancreatology. 2015;15:598–610.

    Article  CAS  PubMed  Google Scholar 

  7. Oberndorfer S. Karzinoide tumoren des Dünndarms. Frankf Z Pathol. 1907;1:425–32.

    Google Scholar 

  8. Masson P. Appendicite neurogéne and carcinoides. Ann Anat Pathol. 1924;1:3–59.

    Google Scholar 

  9. Pearse AG, Polak JM. Endocrine tumours of neural crest origin: neurolophomas, apudomas and the APUD concept. Med Biol. 1974;52:3–18.

    CAS  PubMed  Google Scholar 

  10. Capella C, Heitz PU, Höfler H, Solcia E, Klöppel G. Revised classification of neuroendocrine tumors of the lung, pancreas and gut. Virchows Arch. 1995;425:547–60.

    Article  CAS  PubMed  Google Scholar 

  11. Solcia E, Klöppel G, Sobin LH. Histological typing of endocrine tumours. WHO International Histological Classification of Tumours. 2nd ed. Berlin: Springer; 2000.

    Book  Google Scholar 

  12. Chetty R. Requiem for the term “carcinoid tumour” in the gastrointestinal tract? Can J Gastroenterol. 2008;22:357–8.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Garcia-Carbonero R, Sorbye H, Baudin E, Raymond E, Wiedenmann B, Niederle B, Sedlackova E, Toumpanakis C, Anlauf M, Cwikla JB, Caplin M, O’Toole D, Perren A. Vienna consensus conference participants. ENETS consensus guidelines for high-grade gastroenteropancreatic neuroendocrine tumors and neuroendocrine carcinomas. Neuroendocrinology. 2016;103:186–94.

    Article  CAS  PubMed  Google Scholar 

  14. Williams ED, Siebermann RE, Sobin LH. Histological typing of endocrine tumours. Geneva: World Health Organization; 1980.

    Google Scholar 

  15. Klöppel G, Couvelard A, Hruban RH, Klimstra DS, Komminoth P, Osamura RY, Perren A, Rindi G. Neoplasms of the neuroendocrine pancreas. Introduction. In: Lloyd RV, Osamura RY, Klöppel G, Rosai J, editors. WHO classification of tumours of endocrine organs. 4th ed. Lyon: IARC Press; 2017. p. 211–4.

    Google Scholar 

  16. La Rosa S, Sessa F. High-grade poorly differentiated neuroendocrine carcinomas of the gastroenteropancreatic system: from morphology to proliferation and back. Endocr Pathol. 2014;25:193–8.

    Article  PubMed  CAS  Google Scholar 

  17. Reid MD, Balci S, Saka B, Adsay NV. Neuroendocrine tumors of the pancreas: current concepts and controversies. Endocr Pathol. 2014;25:65–79.

    Article  CAS  PubMed  Google Scholar 

  18. Vélayoudom-Céphise FL, Duvillard P, Foucan L, Hadoux J, Chougnet CN, Leboulleux S, Malka D, Guigay J, Goere D, Debaere T, Caramella C, Schlumberger M, Planchard D, Elias D, Ducreux M, Scoazec JY, Baudin E. Are G3 ENETS neuroendocrine neoplasms heterogeneous? Endocr Relat Cancer. 2013;20:649–57.

    Article  PubMed  Google Scholar 

  19. Basturk O, Yang Z, Tang LH, Hruban RH, Adsay V, McCall CM, Krasinskas AM, Jang KT, Frankel WL, Balci S, Sigel C, Klimstra DS. The high-grade (WHO G3) pancreatic neuroendocrine tumor category is morphologically and biologically heterogeneous and includes both well differentiated and poorly differentiated neoplasms. Am J Surg Pathol. 2015;39:683–90.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Heetfeld M, Chougnet CN, Olsen IH, Rinke A, Borbath I, Crespo G, Barriuso J, Pavel M, O’Toole D, Walter T, other Knowledge Network members. Characteristics and treatment of patients with G3 gastroenteropancreatic neuroendocrine neoplasms. Endocr Relat Cancer. 2015;22:657–64.

    Article  CAS  PubMed  Google Scholar 

  21. Milione M, Maisonneuve P, Spada F, Pellegrinelli A, Spaggiari P, Albarello L, Pisa E, Barberis M, Vanoli A, Buzzoni R, Pusceddu S, Concas L, Sessa F, Solcia E, Capella C, Fazio N, La Rosa S. The clinicopathologic heterogeneity of grade 3 gastroenteropancreatic neuroendocrine neoplasms: morphological differentiation and proliferation identify different prognostic categories. Neuroendocrinology. 2017;104:85–93.

    Article  CAS  PubMed  Google Scholar 

  22. Coriat R, Walter T, Terris B, Couvelard A, Ruszniewski P. Gastroenteropancreatic well-differentiated grade 3 neuroendocrine tumors: review and position statement. Oncologist. 2016;21:1191–9.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sorbye H, Welin S, Langer SW, Vestermark LW, Holt N, Osterlund P, Dueland S, Hofsli E, Guren MG, Ohrling K, Birkemeyer E, Thiis-Evensen E, Biagini M, Gronbaek H, Soveri LM, Olsen IH, Federspiel B, Assmus J, Janson ET, Knigge U. Predictive and prognostic factors for treatment and survival in 305 patients with advanced gastrointestinal neuroendocrine carcinoma (WHO G3): the NORDIC NEC study. Ann Oncol. 2013;24:152–60.

    Article  CAS  PubMed  Google Scholar 

  24. Konukiewitz B, Schlitter AM, Jesinghaus M, Pfister D, Steiger K, Segler A, Agaimy A, Sipos B, Zamboni G, Weichert W, Esposito I, Pfarr N, Klöppel G. Somatostatin receptor expression related to TP53 and RB1 alterations in pancreatic and extrapancreatic neuroendocrine neoplasms with a Ki67-index above 20%. Mod Pathol. 2017;30:587–98.

    Article  CAS  PubMed  Google Scholar 

  25. Yamaguchi T, Fujimori T, Tomita S, Ichikawa K, Mitomi H, Ohno K, Shida Y, Kato H. Clinical validation of the gastrointestinal NET grading system: Ki67 index criteria of the WHO 2010 classification is appropriate to predict metastasis or recurrence. Diagn Pathol. 2013;8:65.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sugimoto S, Hotta K, Shimoda T, Imai K, Yamaguchi Y, Nakajima T, Oishi T, Mori K, Takizawa K, Kakushima N, Tanaka M, Kawata N, Matsubayashi H, Ono H. The Ki-67 labeling index and lymphatic/venous permeation predict the metastatic potential of rectal neuroendocrine tumors. Surg Endosc. 2016;30:4239–48.

    Article  PubMed  Google Scholar 

  27. Pelosi G, Bresaola E, Bogina G, Pasini F, Rodella S, Castelli P, Iacono C, Serio G, Zamboni G. Endocrine tumors of the pancreas: Ki-67 immunoreactivity on paraffin sections is an independent predictor for malignancy: a comparative study with proliferating-cell nuclear antigen and progesterone receptor protein immunostaining, mitotic index, and other clinicopathologic variables. Hum Pathol. 1996;27:1124–34.

    Article  CAS  PubMed  Google Scholar 

  28. Goto A, Niki T, Terado Y, Fukushima J, Fukayama M. Prevalence of CD99 protein expression in pancreatic endocrine tumours (PETs). Histopathology. 2004;45:384–92.

    Article  CAS  PubMed  Google Scholar 

  29. Bettini R, Boninsegna L, Mantovani W, Capelli P, Bassi C, Pederzoli P, Delle Fave GF, Panzuto F, Scarpa A, Falconi M. Prognostic factors at diagnosis and value of WHO classification in a mono-institutional series of 180 non-functioning pancreatic endocrine tumours. Ann Oncol. 2008;19:903–8.

    Article  CAS  PubMed  Google Scholar 

  30. Rindi G, Falconi M, Klersy C, Albarello L, Boninsegna L, Buchler MW, Capella C, Caplin M, Couvelard A, Doglioni C, Delle Fave G, Fisher L, Fusai G, de Herder WW, Jann H, Komminoth P, de Krijger RR, La Rosa S, Luong TV, Pape U, Perren A, Ruszniewski P, Scarpa A, Schmitt A, Solcia E, Wiedenmann B. TNM staging of neoplasms of the endocrine pancreas: results from a large international cohort study. J Natl Cancer Inst. 2012;104:764–77.

    Article  CAS  PubMed  Google Scholar 

  31. La Rosa S, Sessa F, Uccella S. Mixed neuroendocrine-nonneuroendocrine neoplasms (MiNENs): unifying the concept of a heterogeneous group of neoplasms. Endocr Pathol. 2016;27:284–11.

    Article  PubMed  CAS  Google Scholar 

  32. Travis WD, Brambilla E, Muller-Hermelink HK, Harris CC. WHO classification of tumours. Pathology & genetics of tumorus of the lung, pleura, thymus and heart. Lyon: IARC press; 2004.

    Google Scholar 

  33. Rindi G, Klersy C, Inzani F, Fellegara G, Ampollini L, Ardizzoni A, Campanini N, Carbognani P, De Pas TM, Galetta D, Granone PL, Righi L, Rusca M, Spaggiari L, Tiseo M, Viale G, Volante M, Papotti M, Pelosi G. Grading the neuroendocrine tumors of the lung: an evidence-based proposal. Endocr Relat Cancer. 2013;21:1–16.

    Article  PubMed  Google Scholar 

  34. Huang CC, Collins BT, Flint A, Michael CW. Pulmonary neuroendocrine tumors: an entity in search of cytologic criteria. Diagn Cytopathol. 2013;41:689–96.

    Article  PubMed  Google Scholar 

  35. Nicholson SA, Ryan MR. A review of cytologic findings in neuroendocrine carcinomas including carcinoid tumors with histologic correlation. Cancer. 2000;90:148–61.

    Article  CAS  PubMed  Google Scholar 

  36. Mitra V, Nayar MK, Leeds JS, Wadehra V, Haugk B, Scott J, Charnley RM, Oppong KW. Diagnostic performance of endoscopic ultrasound (EUS)/endoscopic ultrasound--fine needle aspiration (EUS-FNA) cytology in solid and cystic pancreatic neuroendocrine tumours. J Gastrointestin Liver Dis. 2015;24:69–75.

    PubMed  Google Scholar 

  37. Morales-Oyarvide V, Yoon WJ, Ingkakul T, Forcione DG, Casey BW, Brugge WR, Fernández-del Castillo C, Pitman MB. Cystic pancreatic neuroendocrine tumors: the value of cytology in preoperative diagnosis. Cancer Cytopathol. 2014;122:435–44.

    Article  CAS  PubMed  Google Scholar 

  38. Bosman FT, Carneiro F, Hruban RH, Theise ND. WHO classification of tumours of the digestive system. 4th ed. Lyon: IARC; 2010.

    Google Scholar 

  39. Maleki Z. Diagnostic issues with cytopathologic interpretation of lung neoplasms displaying high-grade basaloid or neuroendocrine morphology. Diagn Cytopathol. 2011;39:159–67.

    Article  PubMed  Google Scholar 

  40. Yang YJ, Steele CT, Ou XL, Snyder KP, Kohman LJ. Diagnosis of high-grade pulmonary neuroendocrine carcinoma by fine-needle aspiration biopsy: nonsmall-cell or small-cell type? Diagn Cytopathol. 2001;25:292–300.

    Article  CAS  PubMed  Google Scholar 

  41. Zee SY, Hochwald SN, Conlon KC, Brennan MF, Klimstra DS. Pleomorphic pancreatic endocrine neoplasms: a variant commonly confused with adenocarcinoma. Am J Surg Pathol. 2005;29:1194–200.

    Article  PubMed  Google Scholar 

  42. Lloyd RV, Wilson BS. Specific endocrine tissue marker defined by a monoclonal antibody. Science. 1983;222:628–30.

    Article  CAS  PubMed  Google Scholar 

  43. Taupenot L, Harper KL, O’Connor DT. The chromogranin–secretogranin family. N Engl J Med. 2003;348:1134–49.

    Article  CAS  PubMed  Google Scholar 

  44. Weiler R, Feichtinger H, Schmid KW, Fischer-Colbrie R, Grimelius L, Cedermark B, Papotti M, Bussolati G, Winkler H. Chromogranin A and B and secretogranin II in bronchial and intestinal carcinoids. Virchows Arch A Pathol Anat Histopathol. 1987;412:103–9.

    Article  CAS  PubMed  Google Scholar 

  45. Gould VE, Lee I, Wiedenmann B, Moll R, Chejfec G, Franke WW. Synaptophysin: a novel marker for neurons, certain neuroendocrine cells, and their neoplasms. Hum Pathol. 1986;17:979–83.

    Article  CAS  PubMed  Google Scholar 

  46. Komminoth P, Roth J, Schröder S, Saremaslani P, Heitz PU. Overlapping expression of immunohistochemical markers and synaptophysin mRNA in pheochromocytomas and adrenocortical carcinomas. Implications for the differential diagnosis of adrenal gland tumors. Lab Investig. 1995;72:424–31.

    CAS  PubMed  Google Scholar 

  47. Portela-Gomes GM, Lukinius A, Grimelius L. Synaptic vesicle protein 2, a new neuroendocrine cell marker. Am J Pathol. 2000;157:1299–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jakobsen AM, Andersson P, Saglik G, Andersson E, Kölby L, Erickson JD, Forssell-Aronsson E, Wängberg B, Ahlman H, Nilsson O. Differential expression of vesicular monoamine transporter (VMAT) 1 and 2 in gastrointestinal endocrine tumours. J Pathol. 2001;195:463–72.

    Article  CAS  PubMed  Google Scholar 

  49. Uccella S, Cerutti R, Vigetti D, Furlan D, Oldrini R, Carnevali I, Pelosi G, La Rosa S, Passi A, Capella C. Histidine decarboxylase, DOPA decarboxylase, and vesicular monoamine transporter 2 expression in neuroendocrine tumors: immunohistochemical study and gene expression analysis. J Histochem Cytochem. 2006;54:863–7.

    Article  CAS  PubMed  Google Scholar 

  50. Barollo S, Bertazza L, WatutantrigeFernando S, Censi S, Cavedon E, Galuppini F, Pennelli G, Fassina A, Citton M, Rubin B, Pezzani R, Benna C, Opocher G, Iacobone M, Mian C. Overexpression of L-type amino acid transporter 1 (LAT1) and 2 (LAT2): novel markers of neuroendocrine tumors. PLoS One. 2016;11(5):e0156044. https://doi.org/10.1371/journal.pone.0156044.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Schmechel DE. Gamma-subunit of the glycolytic enzyme enolase: nonspecific or neuron specific? Lab Investig. 1985;52:239–42.

    CAS  PubMed  Google Scholar 

  52. Lauweryns JM, Van Ranst L. Protein gene product 9.5 expression in the lungs of humans and other mammals. Immunocytochemical detection in neuroepithelial bodies, neuroendocrine cells and nerves. Neurosci Lett. 1988;85:311–6.

    Article  CAS  PubMed  Google Scholar 

  53. Lauweryns JM, Van Ranst L. Immunocytochemical localization of aromatic L-amino acid decarboxylase in human, rat, and mouse bronchopulmonary and gastrointestinal endocrine cells. J Histochem Cytochem. 1988;36:1181–6.

    Article  CAS  PubMed  Google Scholar 

  54. Lloyd RV, Sisson JC, Shapiro B, Verhofstad AA. Immunohistochemical localization of epinephrine, norepinephrine, catecholamine-synthesizing enzymes, and chromogranin in neuroendocrine cells and tumors. Am J Pathol. 1986;125:45–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Shipley WR, Hammer RD, Lennington WJ, Macon WR. Paraffin immunohistochemical detection of CD56, a useful marker for neural cell adhesion molecule (NCAM), in normal and neoplastic fixed tissues. Appl Immunohistochem. 1997;5:87–93.

    Article  CAS  Google Scholar 

  56. Jin L, Hemperly JJ, Lloyd RV. Expression of neural cell adhesion molecule in normal and neoplastic human neuroendocrine tissues. Am J Pathol. 1991;138:961–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Bösmüller HC, Wagner P, Pham DL, Fischer AK, Greif K, Beschorner C, Sipos B, Fend F, Staebler A. CD56 (Neural cell adhesion molecule) expression in ovarian carcinomas: association with high-grade and advanced stage but not with neuroendocrine differentiation. Int J Gynecol Cancer. 2017;27:239–45.

    Article  PubMed  Google Scholar 

  58. Vasei M, Moch H, Mousavi A, Kajbafzadeh AM, Sauter G. Immunohistochemical profiling of Wilms tumor: a tissue microarray study. Appl Immunohistochem Mol Morphol. 2008;16:128–34.

    Article  CAS  PubMed  Google Scholar 

  59. Wachowiak R, Rawnaq T, Metzger R, Quaas A, Fiegel H, Kahler N, Rolle U, Izbicki JR, Kaifi J, Till H. Universal expression of cell adhesion molecule NCAM in neuroblastoma in contrast to L1: implications for different roles in tumor biology of neuroblastoma? Pediatr Surg Int. 2008;24:1361–4.

    Article  PubMed  Google Scholar 

  60. Van Camp B, Durie BGM, Spier C. Plasma cells in multiple myeloma express a natural killer cell associated antigen: CD56 (NKH-1; Leu-19). Blood. 1990;76:377–82.

    PubMed  Google Scholar 

  61. Arber DA, Weirs LM. CD57: a review. Appl Immunohistochem. 1995;3:137–52.

    CAS  Google Scholar 

  62. Tischler AS, Mobtaker H, Mann K, Mann K, Nunnemacher G, Jason WJ, Dayal Y, Delellis RA, Adelman L, Wolfe HJ. Anti-lymphocyte antibody Leu 7 (HNK-1) recognizes a constituent of NE granule matrix. J Histochem Cytochem. 1986;34:1213–6.

    Article  CAS  PubMed  Google Scholar 

  63. Ball DW, Azzoli CG, Baylin SB, Chi D, Dou S, Donis-Keller H, Cumaraswamy A, Borges M, Nelkin BD. Identification of a human achaete-scute homolog highly expressed in neuroendocrine tumors. Proc Natl Acad Sci U S A. 1993;90:5648–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ball DW. Achaete-scute homolog-1 and notch in lung neuroendocrine development and cancer. Cancer Lett. 2004;204:159–69.

    Article  CAS  PubMed  Google Scholar 

  65. La Rosa S, Marando A, Gatti G, Rapa I, Volante M, Papotti M, Sessa F, Capella C. Achaete-scute homolog 1 as a marker of poorly differentiated neuroendocrine carcinomas of different sites: a validation study using immunohistochemistry and quantitative real-time polymerase chain reaction on 335 cases. Hum Pathol. 2013;44:1391–9.

    Article  PubMed  CAS  Google Scholar 

  66. Altree-Tacha D, Tyrrell J, Li F. mASH1 is highly specific for neuroendocrine carcinomas: an Immunohistochemical evaluation on normal and various neoplastic tissues. Arch Pathol Lab. 2017;141:288–92.

    Article  Google Scholar 

  67. Duan K, Mete O. Algorithmic approach to neuroendocrine tumors in targeted biopsies: practical applications of immunohistochemical markers. Cancer. 2016;124:871–84.

    Google Scholar 

  68. Bahrami A, Truong LD, Ro JY. Undifferentiated tumor: true identity by immunohistochemistry. Arch Pathol Lab Med. 2008;132:326–48.

    PubMed  Google Scholar 

  69. Bahrami A, Gown AM, Baird GS, Hicks MJ, Folpe AL. Aberrant expression of epithelial and neuroendocrine markers in alveolar rhabdomyosarcoma: a potentially serious diagnostic pitfall. Mod Pathol. 2008;21:795–806.

    Article  CAS  PubMed  Google Scholar 

  70. Zhang C, Schmidt LA, Hatanaka K, Thomas D, Lagstein A, Myers JL. Evaluation of napsin A, TTF-1, p63, p40, and CK5/6 immunohistochemical stains in pulmonary neuroendocrine tumors. Am J Clin Pathol. 2014;142:320–4.

    Article  PubMed  Google Scholar 

  71. Lyda MH, Weiss LM. Immunoreactivity for epithelial and neuroendocrine antibodies are useful in the differential diagnosis of lung carcinomas. Hum Pathol. 2000;31:980–7.

    Article  CAS  PubMed  Google Scholar 

  72. Bellizzi AM. Assigning site of origin in metastatic neuroendocrine neoplasms: a clinically significant application of diagnostic immunohistochemistry. Adv Anat Pathol. 2013;20:285–314.

    Article  CAS  PubMed  Google Scholar 

  73. Whitfield ML, George LK, Grant GD, Perou CM. Common markers of proliferation. Nat Rev Cancer. 2006;6:99–106.

    Article  CAS  PubMed  Google Scholar 

  74. Scholzen T, Gerdes J. The Ki-67 protein: from the known and the unknown. J Cell Physiol. 2000;182:311–22.

    Article  CAS  PubMed  Google Scholar 

  75. Kaemmerer D, Posorski N, von Eggeling F, Ernst G, Hörsch D, Baum RP, Prasad V, Langer R, Esposito I, Klöppel G, Sehner S, Knösel T, Hommann M. The search for the primary tumor in metastasized gastroenteropancreatic neuroendocrine neoplasm. Clin Exp Metastasis. 2014;31:817–27.

    Article  CAS  PubMed  Google Scholar 

  76. Silberg DG, Swain GP, Suh ER, Traber PG. Cdx1 and cdx2 expression during intestinal development. Gastroenterology. 2000;119:961–71.

    Article  CAS  PubMed  Google Scholar 

  77. Moskaluk CA, Zhang H, Powell SM, et al. Cdx2 protein expression in normal and malignant human tissues: an immunohistochemical survey using tissue microarrays. Mod Pathol. 2003;16:913–9.

    Article  PubMed  Google Scholar 

  78. Li MK, Folpe AL. CDX-2, a new marker for adenocarcinoma of gastrointestinal origin. Adv Anat Pathol. 2004;11:101–5.

    Article  CAS  PubMed  Google Scholar 

  79. De Lott LB, Morrison C, Suster S, Cohn DE, Frankel WL. CDX2 is a useful marker of intestinal-type differentiation: a tissue microarray-based study of 629 tumors from various sites. Arch Pathol Lab Med. 2005;129:1100–5.

    PubMed  Google Scholar 

  80. Ortiz-Rey JA, Alvarez C, San Miguel P, Iglesias B, Anton I. Expression of CDX2, cytokeratins 7 and 20 in sinonasal intestinal-type adenocarcinoma. Appl Immunohistochem Mol Morphol. 2005;13:142–6.

    Article  CAS  PubMed  Google Scholar 

  81. Erickson LA, Papouchado B, Dimashkieh H, Zhang S, Nakamura N, Lloyd RV. Cdx2 as a marker for neuroendocrine tumors of unknown primary sites. Endocr Pathol. 2004;15:247–52.

    Article  CAS  PubMed  Google Scholar 

  82. La Rosa S, Rigoli E, Uccella S, Chiaravalli AM, Capella C. CDX2 as a marker of intestinal EC-cells and related well-differentiated endocrine tumors. Virchows Arch. 2004;445:248–54.

    Article  CAS  PubMed  Google Scholar 

  83. Barbareschi M, Roldo C, Zamboni G, et al. CDX-2 homeobox gene product expression in neuroendocrine tumors: its role as a marker of intestinal neuroendocrine tumors. Am J Surg Pathol. 2004;28:1169–76.

    Article  PubMed  Google Scholar 

  84. La Rosa S, Chiaravalli AM, Placidi C, Papanikolaou N, Cerati M, Capella C. TTF1 expression in normal lung neuroendocrine cells and related tumors: immunohistochemical study comparing two different monoclonal antibodies. Virchows Arch. 2010;457:497–507.

    Article  PubMed  CAS  Google Scholar 

  85. Ahlgren U, Pfaff SL, Jessell TM, Hedlun D, Hedlund H. Independent requirement for ISL1 in formation of pancreatic mesenchyme and islet cells. Nature. 1997;385:257–26.

    Article  CAS  PubMed  Google Scholar 

  86. Park JY, Hong SM, Klimstra DS, et al. Pdx1 expression in pancreatic precursor lesions and neoplasms. Appl Immunohistochem Mol Morphol. 2011;19:444–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Srivastava A, Hornick JL. Immunohistochemical staining for CDX-2, PDX-1, NESP-55, and TTF-1 can help distinguish gastrointestinal carcinoid tumors from pancreatic endocrine and pulmonary carcinoid tumors. Am J Surg Pathol. 2009;33:626–32.

    Article  PubMed  Google Scholar 

  88. Cheuk W, Kwan MY, Suster S, Chan JK. Immunostaining for thyroid transcription factor 1 and cytokeratin 20 aids the distinction of small cell carcinoma from Merkel cell carcinoma, but not pulmonary from extrapulmonary small cell carcinomas. Arch Pathol Lab Med. 2001;125:228–31.

    CAS  PubMed  Google Scholar 

  89. Ly TY, Walsh NM, Pasternak S. The spectrum of Merkel cell polyomavirus expression in Merkel cell carcinoma, in a variety of cutaneous neoplasms, and in neuroendocrine carcinomas from different anatomical site. Hum Pathol. 2012;43:557–66.

    Article  CAS  PubMed  Google Scholar 

  90. Uccella S, Sessa F, La Rosa S. Diagnostic approach to neuroendocrine neoplasms of the gastrointestinal tract and pancreas. Turk Patoloji Derg. 2015;31(Suppl 1):113–27.

    PubMed  Google Scholar 

  91. Rinke A, Muller HH, Schade-Brittinger C, Klose KJ, Barth P, Wied M, Mayer C, Aminossadati B, Pape UF, Bläker M, Harder J, Arnold C, Gress T, Arnold R, PROMID Study Group. Placebo controlled, double-blind, prospective, randomized study on the effect of octreotide LAR in the control of tumor growth in patients with metastatic neuroendocrine midgut tumors: a report from the PROMID study group. J Clin Oncol. 2009;27:4656–63.

    Article  CAS  PubMed  Google Scholar 

  92. Korner M, Waser B, Schonbrunn A, et al. Somatostatin receptor subtype 2A immunohistochemistry using a new monoclonal antibody selects tumors suitable for in vivo somatostatin receptor targeting. Am J Surg Pathol. 2012;36:242–52.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Volante M, Brizzi MP, Faggiano A, La Rosa S, Rapa I, Ferrero A, Mansueto G, Righi L, Garancini S, Capella C, De Rosa G, Dogliotti L, Colao A, Papotti M. Somatostatin receptor type 2A immunohistochemistry in neuroendocrine tumors: a proposal of scoring system correlated with somatostatin receptor scintigraphy. Mod Pathol. 2007;20:1172–82.

    Article  CAS  PubMed  Google Scholar 

  94. Kaemmerer D, Specht E, Sänger J, Wirtz RM, Sayeg M, Schulz S, Lupp A. Somatostatin receptors in bronchopulmonary neuroendocrine neoplasms: new diagnostic, prognostic, and therapeutic markers. J Clin Endocrinol Metab. 2015;100:831–40.

    Article  CAS  PubMed  Google Scholar 

  95. Qian ZR, Li T, Ter-Minassian M, Yang J, Chan JA, Brais LK, Masugi Y, Thiaglingam A, Brooks N, Nishihara R, Bonnemarie M, Masuda A, Inamura K, Kim SA, Mima K, Sukawa Y, Dou R, Lin X, Christiani DC, Schmidlin F, Fuchs CS, Mahmood U, Ogino S, Kulke MH. Association between somatostatin receptor expression and clinical outcomes in neuroendocrine tumors. Pancreas. 2016;45:1386–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Brunner P, Jörg AC, Glatz K, Bubendorf L, Radojewski P, Umlauft M, Marincek N, Spanjol PM, Krause T, Dumont RA, Maecke HR, Müller-Brand J, Briel M, Schmitt A, Perren A, Walter MA. The prognostic and predictive value of sstr2-immunohistochemistry and sstr2-targeted imaging in neuroendocrine tumors. Eur J Nucl Med Mol Imaging. 2017;44:468–75.

    Article  CAS  PubMed  Google Scholar 

  97. Real FX, Vila MR, Skoudy A, Ramaekers FC, Corominas JM. Intermediate filaments as differentiation markers of exocrine pancreas. II. Expression of cytokeratins of complex and stratified epithelia in normal pancreas and in pancreas cancer. Int J Cancer. 1993;54:720–7.

    Article  CAS  PubMed  Google Scholar 

  98. Bouwens L. Cytokeratins and cell differentiation in the pancreas. J Pathol. 1998;184:234–9.

    Article  CAS  PubMed  Google Scholar 

  99. Deshpande V, Fernandez-del Castillo C, Muzikansky A, Deshpande A, Zukerberg L, Warshaw AL, Lauwers GY. Cytokeratin 19 is a powerful predictor of survival in pancreatic endocrine tumors. Am J Surg Pathol. 2004;28:1145–53.

    Article  PubMed  Google Scholar 

  100. Schmitt AM, Anlauf M, Rousson V, Schmid S, Kofler A, Riniker F, Bauersfeld J, Barghorn A, Probst-Hensch NM, Moch H, Heitz PU, Klöppel G, Komminoth P, Perren A. WHO 2004 criteria and CK19 are reliable prognostic markers in pancreatic endocrine tumors. Am J Surg Pathol. 2007;31:1677–82.

    Article  PubMed  Google Scholar 

  101. La Rosa S, Rigoli E, Uccella S, Novario R, Capella C. Prognostic and biological significance of cytokeratin 19 in pancreatic endocrine tumours. Histopathology. 2007;50:597–606.

    Article  CAS  PubMed  Google Scholar 

  102. Zhang L, Smyrk TC, Oliveira AM, Lohse CM, Zhang S, Johnson MR, Lloyd RV. KIT is an independent prognostic marker for pancreatic endocrine tumors: a finding derived from analysis of islet cell differentiation markers. Am J Surg Pathol. 2009;33:1562–9.

    Article  PubMed  Google Scholar 

  103. Han X, Zhao J, Ji Y, Xu X, Lou W. Expression of CK19 and KIT in resectable pancreatic neuroendocrine tumors. Tumour Biol. 2013;34:2881–9.

    Article  CAS  PubMed  Google Scholar 

  104. Ferrari L, Della Torre S, Collini P, et al. Kit protein (CD117) and proliferation index (Ki-67) evaluation in well and poorly differentiated neuroendocrine tumors. Tumori. 2006;92:531–5.

    CAS  PubMed  Google Scholar 

  105. Araki K, Ishii G, Yokose T, et al. Frequent overexpression of the c-kit protein in large cell neuroendocrine carcinoma of the lung. Lung Cancer. 2003;40:173–80.

    Article  PubMed  Google Scholar 

  106. Naeem M, Dahiya M, Clark J, et al. Analysis of c-kit protein expression in small-cell lung carcinoma and its implication for prognosis. Hum Pathol. 2003;33:1182–7.

    Article  CAS  Google Scholar 

  107. La Rosa S, Marando A, Furlan D, Sahnane N, Capella C. Colorectal poorly differentiated neuroendocrine carcinomas and mixed adenoneuroendocrine carcinomas: insights into the diagnostic immunophenotype, assessment of methylation profile, and search for prognostic markers. Am J Surg Pathol. 2012;36:601–11.

    Article  PubMed  Google Scholar 

  108. Ishikubo T, Akagi K, Kurosumi M, Yamaguchi K, Fujimoto T, Sakamoto H, Tanaka Y, Ochiai A. Immunohistochemical and mutational analysis of c-kit in gastrointestinal neuroendocrine cell carcinoma. Jpn J Clin Oncol. 2006;36:494–8.

    Article  PubMed  Google Scholar 

  109. Gross DJ, Munter G, Bitan M, Siegal T, Gabizon A, Weitzen R, Merimsky O, Ackerstein A, Salmon A, Sella A, Slavin S, Israel Glivec in Solid Tumors Study Group. The role of imatinib mesylate (Glivec) for treatment of patients with malignant endocrine tumors positive for c-kit or PDGF-R. Endocr Relat Cancer. 2006;13:535–40.

    Article  CAS  PubMed  Google Scholar 

  110. Sahnane N, Furlan D, Monti M, Romualdi C, Vanoli A, Vicari E, Solcia E, Capella C, Sessa F, La Rosa S. Microsatellite unstable gastrointestinal neuroendocrine carcinomas: a new clinicopathologic entity. Endocr Relat Cancer. 2015;22:35–45.

    Article  CAS  PubMed  Google Scholar 

  111. Sigel CS, Guo H, Sigel KM, Zhang M, Rekhtman N, Lin O, Klimstra DS, Jungbluth AA, Tang LK. Cytology assessment can predict survival for patients with metastatic pancreatic neuroendocrine neoplasms. Cancer. 2017;125:188–96.

    Google Scholar 

  112. Carlinfante G, Baccarini P, Berretti D, Cassetti T, Cavina M, Conigliaro R, De Pellegrin A, Di Tommaso L, Fabbri C, Fornelli A, Frasoldati A, Gardini G, Losi L, Maccio L, Manta R, Pagano N, Sassatelli R, Serra S, Camellini L. Ki-67 cytological index can distinguish well-differentiated from poorly differentiated pancreatic neuroendocrine tumors: a comparative cytohistological study of 53 cases. Virchows Arch. 2014;465:49–55.

    Article  PubMed  Google Scholar 

  113. Rindi G, de Herder WW, O’Toole D, et al. Consensus guidelines for the management of patients with digestive neuroendocrine tumors: the second event and some final considerations. Neuroendocrinology. 2008;87:5–7.

    Article  CAS  PubMed  Google Scholar 

  114. Vinik AI, Woltering EA, Warner RR, Caplin M, O’Dorisio TM, Wiseman GA, Coppola D, Go VL, North American Neuroendocrine Tumor Society (NANETS). NANETS consensus guidelines for the diagnosis of neuroendocrine tumor. Pancreas. 2010;39:713–34.

    Article  PubMed  Google Scholar 

  115. Reid MD, Saka B, Balci S, Goldblum AS, Adsay NV. Molecular genetics of pancreatic neoplasms and their morphologic correlates: an update on recent advances and potential diagnostic applications. Am J Clin Pathol. 2014;141:168–80.

    Article  CAS  PubMed  Google Scholar 

  116. Oberg K. Genetics and molecular pathology of neuroendocrine gastrointestinal and pancreatic tumors (gastroenteropancreatic neuroendocrine tumors). Curr Opin Endocrinol Diabetes Obes. 2009;16:72–8.

    Article  PubMed  CAS  Google Scholar 

  117. Stefanoli M, La Rosa S, Sahnane N, Romualdi C, Pastorino R, Marando A, Capella C, Sessa F, Furlan D. Prognostic relevance of aberrant DNA methylation in g1 and g2 pancreatic neuroendocrine tumors. Neuroendocrinology. 2014;100:26–34.

    Article  CAS  PubMed  Google Scholar 

  118. Modlin IM, Bodei L, Kidd M. Neuroendocrine tumor biomarkers: from monoanalytes to transcripts and algorithms. Best Pract Res Clin Endocrinol Metab. 2016;30:59–77.

    Article  CAS  PubMed  Google Scholar 

  119. Oberg K, Modlin IM, De Herder W, Pavel M, Klimstra D, Frilling A, Metz DC, Heaney A, Kwekkeboom D, Strosberg J, Meyer T, Moss SF, Washington K, Wolin E, Liu E, Goldenring J. Consensus on biomarkers for neuroendocrine tumour disease. Lancet Oncol. 2015;16:e435–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Modlin IM, Drozdov I, Kidd M. The identification of gut neuroendocrine tumor disease by multiple synchronous transcript analysis in blood. PLoS One. 2013;8:e63364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Modlin IM, Drozdov I, Alaimo D, Callahan S, Teixiera N, Bodei L, Kidd M. A multianalyte PCR blood test outperforms single analyte ELISAs (chromogranin A, pancreastatin, neurokinin A) for neuroendocrine tumor detection. Endocr Relat Cancer. 2014;21:615–28.

    Article  CAS  PubMed  Google Scholar 

  122. Pavel M, Jann H, Prasad V, Drozdov I, Modlin IM, Kidd M. NET blood transcript analysis defines the crossing of the clinical Rubicon: when stable disease becomes progressive. Neuroendocrinology. 2017;104:170–82.

    Article  CAS  PubMed  Google Scholar 

  123. Bodei L, Kidd M, Modlin IM, Severi S, Drozdov I, Nicolini S, Kwekkeboom DJ, Krenning EP, Baum RP, Paganelli G. Measurement of circulating transcripts and gene cluster analysis predicts and defines therapeutic efficacy of peptide receptor radionuclide therapy (PRRT) in neuroendocrine tumors. Eur J Nucl Med Mol Imaging. 2016;43:839–51.

    Article  CAS  PubMed  Google Scholar 

  124. Ćwikła JB, Bodei L, Kolasinska-Ćwikła A, Sankowski A, Modlin IM, Kidd M. Circulating transcript analysis (NETest) in GEP-NETs treated with somatostatin analogs defines therapy. J Clin Endocrinol Metab. 2015;100:E1437–45.

    Article  PubMed  CAS  Google Scholar 

  125. Oberg K, Krenning E, Sundin A, Bodei L, Kidd M, Tesselaar M, Ambrosini V, Baum RP, Kulke M, Pavel M, Cwikla J, Drozdov I, Falconi M, Fazio N, Frilling A, Jensen R, Koopmans K, Korse T, Kwekkeboom D, Maecke H, Paganelli G, Salazar R, Severi S, Strosberg J, Prasad V, Scarpa A, Grossman A, Walenkamp A, Cives M, Virgolini I, Kjaer A, Modlin IM. A Delphic consensus assessment: imaging and biomarkers in gastroenteropancreatic neuroendocrine tumor disease management. Endocr Connect. 2016;5:174–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Thorns C, Schurmann C, Gebauer N, Wallaschofski H, Kümpers C, Bernard V, Feller AC, Keck T, Habermann JK, Begum N, Lehnert H, Brabant G. Global microRNA profiling of pancreatic neuroendocrine neoplasias. Anticancer Res. 2014;34:2249–54.

    PubMed  Google Scholar 

  127. Rapa I, Votta A, Felice B, Righi L, Giorcelli J, Scarpa A, Speel EJ, Scagliotti GV, Papotti M, Volante M. Identification of MicroRNAs differentially expressed in lung carcinoid subtypes and progression. Neuroendocrinology. 2015;101:246–55.

    Article  CAS  PubMed  Google Scholar 

  128. Roldo C, Missiaglia E, Hagan JP, Falconi M, Capelli P, Bersani S, Calin GA, Volinia S, Liu CG, Scarpa A, Croce CM. MicroRNA expression abnormalities in pancreatic endocrine and acinar tumors are associated with distinctive pathologic features and clinical behavior. J Clin Oncol. 2006;24:4677–84.

    Article  CAS  PubMed  Google Scholar 

  129. Li A, Yu J, Kim H, Wolfgang CL, Canto MI, Hruban RH, Goggins M. MicroRNA array analysis finds elevated serum miR-1290 accurately distinguishes patients with low-stage pancreatic cancer from healthy and disease controls. Clin Cancer Res. 2013;19:3600–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Li SC, Essaghir A, Martijn C, Lloyd RV, Demoulin JB, Oberg K, Giandomenico V. Global microRNA profiling of well-differentiated small intestinal neuroendocrine tumors. Mod Pathol. 2013;26:685–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Khan MS, Kirkwood A, Tsigani T, Garcia-Hernandez J, Hartley JA, Caplin ME, Meyer T. Circulating tumor cells as prognostic markers in neuroendocrine tumors. J Clin Oncol. 2013;31:365–72.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano La Rosa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

La Rosa, S., Bongiovanni, M., Uccella, S. (2018). Pathology of Neuroendocrine Neoplasms: Morphological, Immunophenotypical, and Circulating Molecular Markers. In: Giovanella, L. (eds) Atlas of Thyroid and Neuroendocrine Tumor Markers. Springer, Cham. https://doi.org/10.1007/978-3-319-62506-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62506-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62505-8

  • Online ISBN: 978-3-319-62506-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics