Skip to main content

Neuroendocrine Gene Transcripts: The Role of Molecular Biomarkers in Diagnosis and Management

  • Chapter
  • First Online:
Atlas of Thyroid and Neuroendocrine Tumor Markers

Abstract

Biomarkers as an entity broadly describe tools and technologies that can facilitate the prediction, cause, diagnosis, progression, regression, or outcome of treatment of disease. Their identification and measurement are used to evaluate and examine a number of processes including normal biological functions, pathological events, or pharmacologic responses to a therapeutic intervention. In general, biological markers (biomarkers) are considered “cellular, biochemical or molecular alterations that are measurable in biological media such as human tissues, cells, or fluids” [1]. Although the majority of previous biomarkers have assessed cell surface or secreted proteins, the current focus has been on the identification of “candidate” biomarkers expressed in the nucleus or cytoplasm. At present, there is limited data on this group, and not all of the putative markers are clinical accessible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Hulka B. Overview of biological markers. In: Hulka B, Griffith J, Wilcosky T, editors. Biological markers in epidemiology. New York: Oxford University Press; 1990. p. 3–15.

    Google Scholar 

  2. Basu PK, Miller I, Ormsby HL. Sex chromatin as a biologic cell marker in the study of the fate of corneal transplants. Am J Ophthalmol. 1960;49:513–5.

    Article  CAS  PubMed  Google Scholar 

  3. Aronson JK. Biomarkers and surrogate endpoints. Br J Clin Pharmacol. 2005;59:491–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001;69:89–95.

    Article  Google Scholar 

  5. Frank R, Hargreaves R. Clinical biomarkers in drug discovery and development. Nat Rev Drug Discov. 2003;2:566–80.

    Article  CAS  PubMed  Google Scholar 

  6. Csosz E, Kallo G, Markus B, Deak E, Csutak A, Tozser J. Quantitative body fluid proteomics in medicine - A focus on minimal invasiveness. J Proteome. 2017;153:30–43. https://doi.org/10.1016/j.jprot.2016.1008.1009. Epub 2016 Aug 1016

    Article  CAS  Google Scholar 

  7. Pepe MS. An interpretation for the ROC curve and inference using GLM procedures. Biometrics. 2000;56:352–9.

    Article  CAS  PubMed  Google Scholar 

  8. Shapiro DE. The interpretation of diagnostic tests. Stat Methods Med Res. 1999;8:113–34.

    Article  CAS  PubMed  Google Scholar 

  9. Stridsberg M, Oberg K, Li Q, Engstrom U, Lundqvist G. Measurements of chromogranin A, chromogranin B (secretogranin I), chromogranin C (secretogranin II) and pancreastatin in plasma and urine from patients with carcinoid tumours and endocrine pancreatic tumours. J Endocrinol. 1995;144:49–59.

    Article  CAS  PubMed  Google Scholar 

  10. Calhoun K, Toth-Fejel S, Cheek J, Pommier R. Serum peptide profiles in patients with carcinoid tumors. Am J Surg. 2003;186:28–31.

    Article  CAS  PubMed  Google Scholar 

  11. Joos GF, Vincken W, Louis R, et al. Dual tachykinin NK1/NK2 antagonist DNK333 inhibits neurokinin A-induced bronchoconstriction in asthma patients. Eur Respir J. 2004;23:76–81.

    Article  CAS  PubMed  Google Scholar 

  12. Lindholm DP, Oberg K. Biomarkers and molecular imaging in gastroenteropancreatic neuroendocrine tumors. Horm Metab Res. 2011;43:832–7. Epub 2011 Oct 2018

    Article  CAS  PubMed  Google Scholar 

  13. Modlin IM, Gustafsson BI, Moss SF, Pavel M, Tsolakis AV, Kidd M. Chromogranin A—biological function and clinical utility in neuro endocrine tumor disease. Ann Surg Oncol. 2010;17:2427–43.

    Article  PubMed  Google Scholar 

  14. Yao JC, Pavel M, Phan AT, et al. Chromogranin A and neuron-specific enolase as prognostic markers in patients with advanced pNET treated with everolimus. J Clin Endocrinol Metab. 2011;96:3741–9. Epub 2011 Oct 3712

    Article  CAS  PubMed  Google Scholar 

  15. Oberg K, Modlin I, DeHerder W, et al. Biomarkers for Neuroendocrine Tumor Disease: A Delphic Consensus assessment of Multianalytes, Genomics, Circulating Cells and Monoanalytes. Lancet Oncol. 2015;16:e435046.

    Article  Google Scholar 

  16. Portela-Gomes GM, Stridsberg M. Selective processing of chromogranin A in the different islet cells in human pancreas. J Histochem Cytochem. 2001;49:483–90.

    Article  CAS  PubMed  Google Scholar 

  17. Stridsberg M, Eriksson B, Oberg K, Janson ET. A comparison between three commercial kits for chromogranin A measurements. J Endocrinol. 2003;177:337–41.

    Article  CAS  PubMed  Google Scholar 

  18. Verderio P, Dittadi R, Marubini E, et al. An Italian program of External Quality Control for chromogranin A (CgA) assay: performance evaluation of CgA determination. Clin Chem Lab Med. 2007;45:1244–50.

    Article  CAS  PubMed  Google Scholar 

  19. Lawrence B, Gustafsson BI, Kidd M, Pavel M, Svejda B, Modlin IM. The clinical relevance of chromogranin A as a biomarker for gastroenteropancreatic neuroendocrine tumors. Endocrinol Metab Clin N Am. 2011;40:111–134, viii. https://doi.org/10.1016/j.ecl.2010.1012.1001.

    Article  CAS  Google Scholar 

  20. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57–70.

    Article  CAS  PubMed  Google Scholar 

  21. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74. https://doi.org/10.1016/j.cell.2011.1002.1013.

    Article  CAS  PubMed  Google Scholar 

  22. Walenkamp A, Crespo G, Fierro Maya F, et al. Hallmarks of gastrointestinal neuroendocrine tumours: implications for treatment. Endocr Relat Cancer. 2014;21:R445–60. https://doi.org/10.1530/ERC-1514-0106.

    Article  PubMed  Google Scholar 

  23. Wang E, Zaman N, McGee S, Milanese JS, Masoudi-Nejad A, O'Connor-McCourt M. Predictive genomics: A cancer hallmark network framework for predicting tumor clinical phenotypes using genome sequencing data. Semin Cancer Biol. 2014;18:00050–9.

    Google Scholar 

  24. Kidd M, Drozdov I, Modlin I. Blood and tissue neuroendocrine tumor gene cluster analysis correlate, define hallmarks and predict disease status. Endocr Relat Cancer. 2015;22:561–75. https://doi.org/10.1530/ERC-1515-0092. Epub 2015 Jun 1532

    Article  CAS  PubMed  Google Scholar 

  25. Kidd M, Modlin I, Bodei L, Drozdov I. Decoding the Molecular and Mutational Ambiguities of Gastroenteropancreatic Neuroendocrine Neoplasm Pathobiology. Cell Mol Gastroenterol Hepatol. 2015;1:131–53.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Larsson C, Skogseid B, Oberg K, Nakamura Y, Nordenskjold M. Multiple endocrine neoplasia type 1 gene maps to chromosome 11 and is lost in insulinoma. Nature. 1988;332:85–7.

    Article  CAS  PubMed  Google Scholar 

  27. Hughes CM, Rozenblatt-Rosen O, Milne TA, et al. Menin associates with a trithorax family histone methyltransferase complex and with the hoxc8 locus. Mol Cell. 2004;13:587–97.

    Article  CAS  PubMed  Google Scholar 

  28. Richard S, Campello C, Taillandier L, Parker F, Resche F. Haemangioblastoma of the central nervous system in von Hippel-Lindau disease. French VHL Study Group. J Intern Med. 1998;243:547–53.

    Article  CAS  PubMed  Google Scholar 

  29. Ruggieri M, Pavone V, De Luca D, Franzo A, Tine A, Pavone L. Congenital bone malformations in patients with neurofibromatosis type 1 (Nf1). J Pediatr Orthop. 1999;19:301–5.

    CAS  PubMed  Google Scholar 

  30. Au KS, Rodriguez JA, Finch JL, et al. Germ-line mutational analysis of the TSC2 gene in 90 tuberous-sclerosis patients. Am J Hum Genet. 1998;62:286–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kidd M, Modlin I, Oberg K. Towards a new classification of gastroenteropancreatic neuroendocrine neoplasms. Nat Rev Clin Oncol. 2016;13:691–705. https://doi.org/10.1038/nrclinonc.2016.1085. Epub 2016 Jun 1037

    Article  CAS  PubMed  Google Scholar 

  32. Jiao Y, Shi C, Edil BH, et al. DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science. 2011;331:1199–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cromer MK, Choi M, Nelson-Williams C, et al. Neomorphic effects of recurrent somatic mutations in Yin Yang 1 in insulin-producing adenomas. Proc Natl Acad Sci U S A. 2015;112:4062–7. https://doi.org/10.1073/pnas.1503696112. Epub 1503692015 Mar 1503696118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Banck MS, Kanwar R, Kulkarni AA, et al. The genomic landscape of small intestine neuroendocrine tumors. J Clin Invest. 2013;123(6):2502–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lawrence MS, Stojanov P, Polak P, et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature. 2013;499:214–8. https://doi.org/10.1038/nature12213. Epub 12013 Jun 12216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Francis JM, Kiezun A, Ramos AH, et al. Somatic mutation of CDKN1B in small intestine neuroendocrine tumors. Nat Genet. 2013;45:1483–6. https://doi.org/10.1038/ng.2821. Epub 2013 Nov 1483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chan AO, Kim SG, Bedeir A, Issa JP, Hamilton SR, Rashid A. CpG island methylation in carcinoid and pancreatic endocrine tumors. Oncogene. 2003;22:924–34.

    Article  CAS  PubMed  Google Scholar 

  38. House MG, Herman JG, Guo MZ, et al. Prognostic value of hMLH1 methylation and microsatellite instability in pancreatic endocrine neoplasms. Surgery. 2003;134:902–8. discussion 909

    Article  PubMed  Google Scholar 

  39. Kidd M, Modlin IM, Drozdov I. Gene network-based analysis identifies two potential subtypes of small intestinal neuroendocrine tumors. BMC Genomics. 2014;15:595. https://doi.org/10.1186/1471-2164-1115-1595.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kerr SE, Schnabel CA, Sullivan PS, et al. A 92-gene cancer classifier predicts the site of origin for neuroendocrine tumors. Mod Pathol. 2014;27:44–54. https://doi.org/10.1038/modpathol.2013.1105. Epub 2013 Jul 1012.

    Article  CAS  PubMed  Google Scholar 

  41. Modlin IM, Kidd M, Bodei L, Drozdov I, Aslanian H. The Clinical Utility of a Novel Blood-Based Multi-Transcriptome Assay for the Diagnosis of Neuroendocrine Tumors of the Gastrointestinal Tract. Am J Gastroenterol. 2015;110:1223–32. https://doi.org/10.1038/ajg.2015.1160. Epub 2015 Jun 1222

    Article  CAS  PubMed  Google Scholar 

  42. Modlin I, Drozdov I, Kidd M. The Identification of gut neuroendocrine tumor disease by multiple synchronous transcript analysis in blood. PLoS One. 2013;8(5):e63364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Modlin IM, Aslanian H, Bodei L, Drozdov I, Kidd M. A PCR blood test outperforms chromogranin A in carcinoid detection and is unaffected by PPIs. Endocr Connect. 2014;14:14–0100.

    Google Scholar 

  44. Modlin IM, Frilling A, Salem RR, et al. Blood measurement of neuroendocrine gene transcripts defines the effectiveness of operative resection and ablation strategies. Surgery. 2016;159:336–47. https://doi.org/10.1016/j.surg.2015.1006.1056. Epub 2015 Oct 1019

    Article  PubMed  Google Scholar 

  45. Pavel M, Jann H, Prasad V, Drozdov I, Modlin IM, Kidd M. NET Blood Transcript Analysis defines the Crossing of the Clinical Rubicon: When Stable Disease becomes Progressive. Neuroendocrinology. 2016;15:15.

    Google Scholar 

  46. Cwikla JB, Bodei L, Kolasinska-Cwikla A, Sankowski A, Modlin IM, Kidd M. Circulating transcript analysis (NETest) in GEP-NETs treated with Somatostatin Analogs defines Therapy. J Clin Endocrinol Metab. 2015;100(11):E1437–45.

    Article  CAS  PubMed  Google Scholar 

  47. Bodei L, Kidd M, Modlin IM, et al. Measurement of circulating transcripts and gene cluster analysis predicts and defines therapeutic efficacy of peptide receptor radionuclide therapy (PRRT) in neuroendocrine tumors. Eur J Nucl Med Mol Imaging. 2016;43:839–51. https://doi.org/10.1007/s00259-00015-03250-z. Epub 02015 Nov 00223

    Article  CAS  PubMed  Google Scholar 

  48. Modlin I, Drozdov I, Alaimo D, et al. A multianalyte PCR blood test outperforms single analyte ELISAs for neuroendocrine tumor detection. Endocr Relat Cancer. 2014;21:615–28.

    Article  CAS  PubMed  Google Scholar 

  49. Peczkowska M, Cwikla J, Kidd M, et al. The clinical utility of circulating neuroendocrine gene transcript analysis in well-differentiated paragangliomas and pheochromocytomas. Eur J Endocrinol. 2017;176:143–57. Epub 2016 Nov 2019

    Article  CAS  PubMed  Google Scholar 

  50. Modlin I, Drozdov I, Kidd M. Gut Neuroendocrine Tumor Blood qPCR Fingerprint Assay: Characteristics and Reproducibility. Clin Chem. 2014;52:419–29.

    CAS  Google Scholar 

  51. Bodei L, Kidd M, Modlin IM, et al. Gene transcript analysis blood values correlate with (68)Ga-DOTA-somatostatin analog (SSA) PET/CT imaging in neuroendocrine tumors and can define disease status. Eur J Nucl Med Mol Imaging. 2015;42:1341–52. https://doi.org/10.1007/s00259-00015-03075-00259. Epub 02015 May 00257

    Article  CAS  PubMed  Google Scholar 

  52. Halperin DM, Kulke MH, Yao JC. A Tale of Two Tumors: Treating Pancreatic and Extrapancreatic Neuroendocrine Tumors. Annu Rev Med. 2014;17:17.

    Google Scholar 

  53. Modlin I, Drozdov I, Kidd M. A multitranscript blood neuroendocrine tumor molecular signature to identify treatment efficacy and disease progress. J Clin Oncol. 2013;31(Suppl):A4137.

    Google Scholar 

  54. Lewis MA, Yao JC. Molecular pathology and genetics of gastrointestinal neuroendocrine tumours. Curr Opin Endocrinol Diabetes Obes. 2013;4:4.

    Google Scholar 

  55. Khan MS, Tsigani T, Rashid M, et al. Circulating tumor cells and EpCAM expression in neuroendocrine tumors. Clin Cancer Res. 2011;17:337–45. Epub 2011 Jan 2011

    Article  CAS  PubMed  Google Scholar 

  56. Khan MS, Kirkwood A, Tsigani T, et al. Circulating tumor cells as prognostic markers in neuroendocrine tumors. J Clin Oncol. 2013;31:365–72. https://doi.org/10.1200/JCO.2012.1244.2905. Epub 2012 Dec 1217

    Article  CAS  PubMed  Google Scholar 

  57. Oberg K, Krenning E, Sundin A, et al. A Delphic consensus assessment: imaging and biomarkers in gastroenteropancreatic neuroendocrine tumor disease management. Endocr Connect. 2016;5:174–87. https://doi.org/10.1530/EC-1516-0043. Epub 2016 Aug 1531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Xia Y, Huang CC, Dittmar R, et al. Copy number variations in urine cell free DNA as biomarkers in advanced prostate cancer. Oncotarget. 2016;7(24):35818–31.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Langer P, Kann PH, Fendrich V, et al. Prospective evaluation of imaging procedures for the detection of pancreaticoduodenal endocrine tumors in patients with multiple endocrine neoplasia type 1. World J Surg. 2004;28:1317–22. Epub 2004 Nov 1311

    Article  PubMed  Google Scholar 

  60. van Asselt SJ, Brouwers AH, van Dullemen HM, et al. EUS is superior for detection of pancreatic lesions compared with standard imaging in patients with multiple endocrine neoplasia type 1. Gastrointest Endosc. 2015;81:159–167.e152. https://doi.org/10.1016/j.gie.2014.1009.1037.

    Article  PubMed  Google Scholar 

  61. Sei Y, Zhao X, Forbes J, et al. A Hereditary Form of Small Intestinal Carcinoid Associated With a Germline Mutation in Inositol Polyphosphate Multikinase. Gastroenterology. 2015;149:67–78. https://doi.org/10.1053/j.gastro.2015.1004.1008. Epub 2015 Apr 1059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Li SC, Khan M, Caplin M, Meyer T, Oberg K, Giandomenico V. Somatostatin Analogs Treated Small Intestinal Neuroendocrine Tumor Patients Circulating MicroRNAs. PLoS One. 2015;10:e0125553. https://doi.org/10.1371/journal.pone.0125553. eCollection 0122015

    Article  PubMed  PubMed Central  Google Scholar 

  63. Kinross JM, Drymousis P, Jimenez B, Frilling A. Metabonomic profiling: a novel approach in neuroendocrine neoplasias. Surgery. 2013;154:1185–92. discussion 1192-1183

    Article  PubMed  Google Scholar 

  64. Lewczuk A, Min Chung K, Kolasinska-Cwikla A, Cwikla J, Kidd M, Modlin I. Blood Gene Transcript Analysis Diagnoses Bronchopulmonary NETs and Identifies Progressive Disease. ENETs. Barcelona: Neuroendocrinology; 2016.

    Google Scholar 

  65. Mayo SC, de Jong MC, Pulitano C, et al. Surgical management of hepatic neuroendocrine tumor metastasis: results from an international multi-institutional analysis. Ann Surg Oncol. 2010;17:3129–36. https://doi.org/10.1245/s10434-10010-11154-10435. Epub 12010 Jun 10429

    Article  PubMed  Google Scholar 

  66. Nykjaer KM, Gronbaek H, Nielsen DT, Christiansen P, Astrup LB. Description of patients with midgut carcinoid tumours: clinical database from a Danish centre. In Vivo. 2007;21:679–84.

    PubMed  Google Scholar 

  67. Jensen EH, Kvols L, McLoughlin JM, et al. Biomarkers predict outcomes following cytoreductive surgery for hepatic metastases from functional carcinoid tumors. Ann Surg Oncol. 2007;14:780–5. Epub 2006 Dec 2005

    Article  PubMed  Google Scholar 

  68. Massironi S, Conte D, Sciola V, et al. Plasma chromogranin A response to octreotide test: prognostic value for clinical outcome in endocrine digestive tumors. Am J Gastroenterol. 2010;105:2072–8.

    Article  CAS  PubMed  Google Scholar 

  69. Bodei L, Kidd M, Paganelli G, et al. Clinical features are not reliable in predicting long-term toxicity after PRRT - Evidence from >800 patients to support genetic screen development. Barcelona: ENETs; 2014.

    Google Scholar 

  70. Jensen KH, Hilsted L, Jensen C, Mynster T, Rehfeld JF, Knigge U. Chromogranin A is a sensitive marker of progression or regression in ileo-cecal neuroendocrine tumors. Scand J Gastroenterol. 2013;48:70–7. https://doi.org/10.3109/00365521.00362012.00733953. Epub 00362012 Oct 00365524

    Article  CAS  PubMed  Google Scholar 

  71. Sabet A, Dautzenberg K, Haslerud T, et al. Specific efficacy of peptide receptor radionuclide therapy with (177)Lu-octreotate in advanced neuroendocrine tumours of the small intestine. Eur J Nucl Med Mol Imaging. 2015;42:1238–46. https://doi.org/10.1007/s00259-00015-03041-00256. Epub 02015 Mar 00226

    Article  CAS  PubMed  Google Scholar 

  72. Modlin I, Kidd M. Conversationes de Inebriati. Athenaeum. 2016;20:120–7.

    Google Scholar 

  73. Sherman SK, Maxwell JE, O'Dorisio MS, O'Dorisio TM, Howe JR. Pancreastatin predicts survival in neuroendocrine tumors. Ann Surg Oncol. 2014;21:2971–80. https://doi.org/10.1245/s10434-10014-13728-10430. Epub 12014 Apr 10422

    Article  PubMed  PubMed Central  Google Scholar 

  74. Turner GB, Johnston BT, McCance DR, et al. Circulating markers of prognosis and response to treatment in patients with midgut carcinoid tumours. Gut. 2006;55:1586–91. Epub 2006 Mar 1523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa Bodei M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Bodei, L., Kidd, M., Chung, K.M., Modlin, I. (2018). Neuroendocrine Gene Transcripts: The Role of Molecular Biomarkers in Diagnosis and Management. In: Giovanella, L. (eds) Atlas of Thyroid and Neuroendocrine Tumor Markers. Springer, Cham. https://doi.org/10.1007/978-3-319-62506-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62506-5_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62505-8

  • Online ISBN: 978-3-319-62506-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics