Skip to main content

Circulating Mucins and Cytokeratins in Aggressive Thyroid Cancers

  • Chapter
  • First Online:
Atlas of Thyroid and Neuroendocrine Tumor Markers

Abstract

Follicular cell-derived and medullary thyroid carcinomas constitute a biological continuum progressing from the highly curable well-differentiated forms to the rare aggressive and undifferentiated forms. A progressive dedifferentiation translates in a more aggressive tumor behavior and worse prognosis especially in patients with locally advanced or metastatic disease.

Even if biosynthesis and secretion of thyroglobulin and calcitonin are partially retained in dedifferentiating follicular and parafollicular cells, the synthesis and secretion rate is reduced (i.e., poor secretors) in comparison to normal cells and differentiated cancer cells. Consequently, a large dedifferentiated tumor mass could be associated to low levels of circulating thyroglobulin and calcitonin, and, consequently, the role of these serum markers is rather limited in this scenario.

Therefore, new circulating biomarkers are warranted to help identify patients most likely to benefit from these therapies. Recently, among a series of candidate tumor markers, carbohydrate antigen 19-9 (CA 19-9) and cytokeratin fragments 19 (Cyfra 21.1) emerged as potentially useful prognostic predictors in advanced differentiated thyroid carcinoma and medullary thyroid carcinoma, respectively. Biology and physiopathology, assay methods and laboratory pitfalls, current clinical data, and potential applications of such tumor markers will be addressed in the present chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Are C, Shaha AR. Anaplastic thyroid carcinoma: biology, pathogenesis, prognostic factors and treatment approaches. Ann Surg Oncol. 2006;13:453–64.

    Article  PubMed  Google Scholar 

  2. Sakamoto A, Kasai N, Sugano H. Poorly differentiated carcinoma of the thyroid. A clinicopathologic entity for a high-risk group of papillary and follicular carcinomas. Cancer. 1983;52:1849–55.

    Article  CAS  PubMed  Google Scholar 

  3. Sobrinho-Simoes M, Sambade C, Fonseca E, et al. Poorly differentiated carcinomas of the thyroid gland: a review of the clinicopathologic features of a series of 28 cases of a heterogeneous, clinically aggressive group of thyroid tumors. Int J Surg Pathol. 2002;10:123–31.

    Article  PubMed  Google Scholar 

  4. Durante C, Haddy N, Baudin E, Leboulleux S, Hartl D, Travagli JP, et al. Long-term outcome of 444 patients with distant metastases from papillary and follicular thyroid carcinoma: benefits and limits of radioiodine therapy. J Clin Endocrinol Metab. 2006;91:2892–9.

    Article  CAS  PubMed  Google Scholar 

  5. Giovanella L. Positron emission tomography/computed tomography in patients treated for differentiated thyroid carcinomas. Expert Rev Endocrinol Metab. 2012;7:35–43.

    Article  CAS  Google Scholar 

  6. Schlumberger M, Sherman SI. Approach to the patient with advanced differentiated thyroid cancer. Eur J Endocrinol. 2012;166:5–11.

    Article  CAS  PubMed  Google Scholar 

  7. Brose MS, Nutting CM, Jarzab B, Elisei R, Siena S, Bastholt L, et al. Sorafenib in radioactive iodine-refractory, locally advanced or metastatic differentiated thyroid cancer: a randomised, double-blind, phase 3 trial. Lancet. 2014;384:319–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Schlumberger M, Tahara M, Wirth LJ, Robinson B, Brose MS, Elisei R, et al. Lenvatinib versus placebo in radioiodine-refractory thyroid cancer. N Engl J Med. 2015;372:621–30.

    Article  PubMed  Google Scholar 

  9. Werner RA, Lückerath K, Schmid JS, Higuchi T, Kreissl MC, Grelle I, et al. Thyroglobulin fluctuations in patients with iodine-refractory differentiated thyroid carcinoma on lenvatinib treatment – initial experience. Sci Rep. 2016;6:28081. https://doi.org/10.1038/srep280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Marotta V, Ramundo V, Camera L, Del Prete M, Fonti R, Esposito R, et al. Sorafenib in advanced iodine-refractory differentiated thyroid cancer: efficacy, safety and exploratory analysis of role of serum thyroglobulin and FDG-PET. Clin Endocrinol. 2013;78:760–7.

    Article  CAS  Google Scholar 

  11. Trimboli P, Giovanella L. Serum calcitonin negative medullary thyroid carcinoma: a systematic review of the literature. Clin Chem Lab Med. 2015;53:1507–14.

    Article  CAS  PubMed  Google Scholar 

  12. Bikas A, Vachhani S, Jensen K, Vasko V, Burman KD. Targeted therapies in thyroid cancer: an extensive review of the literature. Expert Rev Clin Pharmacol. 2016;15:1–15.

    Google Scholar 

  13. Werner RA, Schmid JS, Muegge DO, Lückerath K, Higuchi T, Hänscheid H, et al. Prognostic value of serum tumor markers in medullary thyroid cancer patients undergoing vandetanib treatment. Medicine. 2015;94(45):e2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Crabbs J, Patsios D, Sauerbrei E, Ellis PM, Arnold A, Goss G, et al. Tumor cavitation: impact on objective response evaluation in trials of angiogenesis inhibitors in non-small-cell lung cancer. J Clin Oncol. 2009;27:404–10.

    Article  Google Scholar 

  15. Perez-Vilar J, Hill R. The structure and assembly of secreted mucins. J Biol Chem. 1999;274(45):31751–4.

    Article  CAS  PubMed  Google Scholar 

  16. Bansil R, Turner BS. Mucin structure, aggregation, physiological functions and biomedical applications. Curr Opin Colloid Interface Sci. 2006;11:164–70.

    Article  CAS  Google Scholar 

  17. Hollingsworth M, Swanson B. Mucins in cancer: protection and control of the cell surface. Nat Rev Cancer. 2004;4:45–60.

    Article  CAS  PubMed  Google Scholar 

  18. Kloudová K, Hromádková H, Partlová S, Brtnický T, Rob L, Bartůňková J, et al. Expression of tumor antigens on primary ovarian cancer cells compared to established ovarian cancer cell lines. Oncotarget. 2016;7:46120–6.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Plebani M, Basso D, Panozzo MP, Fogar P, Del Favero G, Naccarato R. Tumor markers in the diagnosis, monitoring and therapy of pancreatic cancer: state of the art. Int J Biol Markers. 1995;10:189–99.

    CAS  PubMed  Google Scholar 

  20. Galli C, Basso D, Plebani M. CA 19-9: handle with care. Clin Chem Lab Med. 2013;51:1369–83.

    Article  CAS  PubMed  Google Scholar 

  21. Duffy MG, Sturgeon C, Lamerz R, Haglund C, Holubec VL, Klaptor R, et al. Tumor markers in pancreatic cancer: a European Group on Tumor Markers (EGTM) status report. Ann Oncol. 2010;21:441–7.

    Article  CAS  PubMed  Google Scholar 

  22. Scarà S, Bottoni P, Scatena R. CA 19-9: Biochemical and Clinical Aspects. Adv Exp Med Biol. 2015;867:247–60.

    Article  PubMed  Google Scholar 

  23. Goonnetilleke KS, Siriwardena AK. Systematic review of carbohydrate antigen (CA 19-9) as a biochemical marker in the diagnosis of pancreatic cancer. Eur J Surg Oncol. 2007;33:266–70.

    Article  Google Scholar 

  24. Osswald BR, Klee FE, Wysocki S. The reliability of highly elevated CA 19-9 levels. Dis Markers. 1993;11:275–8.

    Article  CAS  PubMed  Google Scholar 

  25. Kannagi R. Carbohydrate antigen sialyl Lewis a – its pathophysiological significance and induction mechanism in cancer progression. Chang Gung Med. 2007;30:189–209.

    Google Scholar 

  26. Ventrucci M, Pozzato P, Cipolla A, et al. Persistent elevation of serum CA 19-9 with no evidence of malignant disease. Dig Liver Dis. 2009;4:357–63.

    Article  Google Scholar 

  27. Kim BJ, Lee KT, Moon TG, et al. How do we interpret an elevated carbohydrate antigen CA 19-9 level in asymptomatic subjects? Dig Liver Dis. 2009;41:364–9.

    Article  CAS  PubMed  Google Scholar 

  28. Hamada E, Taniguchi T, Baba S, Maekawa M. Investigation of unexpected CA 19-9 elevation in Lewis-negative cancer patients. Ann Clin Biochem. 2012;49:266–72.

    Article  CAS  PubMed  Google Scholar 

  29. Narimatsu H, Iwasaki H, Nakayama F, Ikehara Y, Kudo T, Nishihara S, et al. Lewis and Secretor gene dosages affect CA19-9 and DU-PAN-2 serum levels in normal individuals and colorectal cancer patients. Cancer Res. 1998;58:512–8.

    CAS  PubMed  Google Scholar 

  30. Del Villano BC, Brennan S, Brock P, et al. Radioimmunometric assay for a monoclonal antibody-defined tumor marker, CA 19-9. Clin Chem. 1983;29:549–52.

    PubMed  Google Scholar 

  31. Vestergaard EM, Hein HO, Meyer H, et al. Reference values and biological variation for tumour marker CA 19-9 in serum for different Lewis and secretor genotypes and evaluation of secretor and Lewis genotyping in a Caucasian population. Clin Chem. 1999;45:54–61.

    CAS  PubMed  Google Scholar 

  32. Hoon HS, Mavanur RS. Cancer markers. In: Wild D, John R, Sheehan C, Binder S, He J, editors. The immunoassay handbook. Theory and applications of ligand binding, ELISA and related techniques. 4th ed. Oxford (UK): Elsevier; 2013. p. 841–2.

    Google Scholar 

  33. Passerini R, Cassatella MC, Boveri S, Salvatici M, Radice D, Zorzino L, et al. The pitfalls of CA19-9: routine testing and comparison of two automated immunoassays in a reference oncology center. Am J Clin Pathol. 2012;138:281–7.

    Article  CAS  PubMed  Google Scholar 

  34. Sturgeon CM, Viljoen A. Analytical error and interference in immunoassay: minimizing risk. Ann Clin Biochem. 2011;48:418–32.

    Article  CAS  PubMed  Google Scholar 

  35. Berth M, Bosmans E, Everaert J, Dierick J, Schiettekatte J, Anckaert E, et al. Rheumatoid factor interference in the determination of carbohydrate antigen 19-9 (CA 19-9). Clin Chem Lab Med. 2006;44:1137–9.

    Article  CAS  PubMed  Google Scholar 

  36. Liang Y, Yang Z, Ye W, Yang J, He M, Zhong R. Falsely elevated carbohydrate antigen 19-9 level due to heterophilic antibody interference but not rheumatoid factor: a case report. Clin Chem Lab Med. 2009;47:116–7.

    Article  CAS  PubMed  Google Scholar 

  37. Monaghan PJ, Leonard MB, Neithercut WD, Raraty MG, Sodi R. False positive carbohydrate antigen 19-9 (CA19-9) results due to a low-molecular weight interference in an apparently healthy male. Clin Chim Acta. 2009;406:41–4.

    Article  CAS  PubMed  Google Scholar 

  38. Ismail AA. On detecting interference from endogenous antibodies in immunoassays by doubling dilutions test. Clin Chem Lab Med. 2007;45:851–4.

    Article  CAS  PubMed  Google Scholar 

  39. Immunoassay interference by endogenous antibodies. Proposed Guideline. CLSI document I/LA30-P: Clinical and Laboratory Standards Institute, 2007.

    Google Scholar 

  40. Passerini R, Riggio D, Salvatici M, et al. Interchangeability of measurements of CA 19-9 in serum with four frequently used assays: an update. Clin Chem Lab Med. 2007;45:100–4.

    Article  CAS  PubMed  Google Scholar 

  41. La’ulu SL, Roberts WL. Performance characteristics of five automated CA 19-9 assays. Am J Clin Pathol. 2007;127:436–40.

    Article  PubMed  Google Scholar 

  42. Hotakainen K, Tanner P, Alfthan H, et al. Comparison of three immunoassays for CA 19-9. Clin Chim Acta. 2009;400:123–7.

    Article  CAS  PubMed  Google Scholar 

  43. Deinzer M, Faissner R, Metzger T, et al. Comparison of two different methods for CA19-9 antigen determination. Clin Lab. 2010;56:319–25.

    CAS  PubMed  Google Scholar 

  44. Zur B, Holdenrieder S, Albers E, Waldenbach-Bruenagel G, Stoffel-Wagner B. Method comparison for CA 15-3, CA 19-9, and CA 125 determination using the new loci technique of Dimension Vista 1500 and Immulite 2000 XPI. J Immunoassay Immunochem. 2012;33:435–45.

    Article  CAS  PubMed  Google Scholar 

  45. Marlet J, Bernard M. Comparison of LUMIPULSE(®) G1200 with Kryptor and Modular E170 for the Measurement of Seven Tumor Markers. J Clin Lab Anal. 2016;30:5–12.

    Article  CAS  PubMed  Google Scholar 

  46. de Rancher MR, Oudart JB, Maquart FX, Monboisse JC, Ramont L. Evaluation of Lumipulse® G1200 for the measurement of six tumor markers: Comparison with AIA® 2000. Clin Biochem. 2016;49:1302–6.

    Article  PubMed  Google Scholar 

  47. Partyka K, Maupin KA, Brand RE, Haab BB. Diverse monoclonal antibodies against the CA 19-9 antigen show variation in binding specificity with consequences for clinical interpretation. Proteomics. 2012;12:2212–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Milman S, Whitney KD, Fleischer N. Metastatic medullary thyroid cancer presenting with elevated levels of CA 19-9 and CA 125. Thyroid. 2011;21:913–6.

    Article  PubMed  Google Scholar 

  49. Elisei R, Lorusso L, Romei C, Bottici V, Mazzeo S, Giani C, et al. Medullary thyroid cancer secreting carbohydrate antigen 19-9 (CA 19-9): a fatal case report. J Clin Endocrinol Metab. 2013;98:3550–4.

    Article  CAS  PubMed  Google Scholar 

  50. Elisei R, Lorusso L, Piaggi P, Torregrossa L, Pellegrini G, Molinaro E, et al. Elevated level of serum carbohydrate antigen 19.9 as predictor of mortality in patients with advanced medullary thyroid cancer. Eur J Endocrinol. 2015;173:297–304.

    Article  CAS  PubMed  Google Scholar 

  51. Milman S, Arnold JL, Price M, Negassa A, Surks MI, Fleischer M, Whitney KD. Medullary thyroid cancer that stains negative for CA 19-9 has decreased metastatic potential. Endocr Pract. 2015;21:590–4.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Ogawa M, Hori H, Hirayama M, Kobayashi M, Shiraishi T, Watanabe Y, et al. Anaplastic transformation from papillary thyroid carcinoma with increased serum CA19-9. Pediatr Blood Cancer. 2005;45:64–7.

    Article  PubMed  Google Scholar 

  53. Parry D, Steinert PM. Intermediate filaments: molecular architecture, assembly, dynamics and polymorphism. Q Rev Biophys. 1999;32:99–187.

    Article  CAS  PubMed  Google Scholar 

  54. Strelkov SV, Herrman H, Aebi U. Molecular architecture of intermediate filaments. BioEssays. 2003;25:243–51.

    Article  CAS  PubMed  Google Scholar 

  55. Lane EB, Alexander CM. Use of keratin antibodies in tumor diagnosis. Cancer Biol Ther. 1990;1:2707–14.

    Google Scholar 

  56. Chu PG, Weiss LM. Keratin expression in human tissues and neoplasms. Histopathology. 2002;40:403–39.

    Article  CAS  PubMed  Google Scholar 

  57. Moll R, Franke WW, Schiller DL, Geiger B, Krepler R. The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell. 1982;31:11–24.

    Article  CAS  PubMed  Google Scholar 

  58. Mellerick DM, Osborn M, Weber K. On the nature of serological tissue polypeptide antigen (TPA); monoclonal keratin 8, 18 and 19 antibodies react differently with TPA prepared from human cultured carcinoma cells and TPA in human serum. Oncogene. 1990;5:1007–17.

    CAS  PubMed  Google Scholar 

  59. Lindman H, Jansson T, Arnberg H, Bergh J, Einarsson R. Serum markers TPS, TPA and CA 15-3 as monitors of chemotherapy in patients with metastatic breast cancer. J Tumor Marker Oncol. 2000;15:177–86.

    Google Scholar 

  60. Nicolini A, Caciagli M, Zampieri F, et al. Usefulness of CEA, TPA,GICA, CA 72.4, and CA 195 in the diagnosis of primary colorectal cancer and its relapse. Cancer Detect Prev. 1995;19:183–95.

    CAS  PubMed  Google Scholar 

  61. Plebani M, Basso D, Navaglia F, De Paoli M, Tommasini A, Cipriani A. Clinical evaluation of seven tumor markers in lung cancer diagnosis: can any combination improve the results? Br J Cancer. 1995;72:170–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Rosati G, Riccardi F, Tucci A. Use of tumor markers in the management of head and neck cancer. Int J Biol Markers. 2000;15:179–83.

    CAS  PubMed  Google Scholar 

  63. Bennink R, Van Poppel H, Billen J, et al. Serum tissue polypeptide antigen (TPA): monoclonal or polyclonal radioimmunometric assay for the follow-up of bladder cancer. Anticancer Res. 1999;19:2609–14.

    CAS  PubMed  Google Scholar 

  64. Bonfrer JMG, Goenveld EM, Korse CM, Van Dalen A, Oomen LCJM, Ivanyi D. Monoclonal antibody M3 used in tissue polypeptide-specific antigen assay for the quantification of tissue polypeptide antigen recognizes keratin 18. Tumor Biol. 1994;15:210–22.

    Article  CAS  Google Scholar 

  65. Barak V, Goike H, Panaretakis KW, Einarsson R. Clinical utility of cytokeratins as tumor markers. Clin Biochem. 2004;37:529–40.

    Article  CAS  PubMed  Google Scholar 

  66. Bjorklund B, Einarsson R. TPS (tissue polypeptide specific antigen) in oncologic practice: a review with reference to 3000 cases of breast cancer. Tumor Diagn Ther. 1996;17:67–73.

    Google Scholar 

  67. Bodenmueller H, Ofenloch-Haehnle B, Lane EB, Dessauer A, Bottger V, Donie F. Lung cancer-associated keratin 19-fragment: development and biochemical characterization of the new serum assay Enzymun Test CYFRA 21-1. Int J Biol Markers. 1994;9:75–81.

    CAS  Google Scholar 

  68. Sheard MA, Vojtesek B, Simickova M. Valik D Release of cytokeratin-18 and -19 fragments (TPS and CYFRA 21-1) into the extracellular space during apoptosis. J Cell Biochem. 2002;85:670–7.

    Article  CAS  PubMed  Google Scholar 

  69. Holdenrieder S. Biomarkers along the continuum of care in lung cancer. Scan Journal Clin Lab Invest. 2016;76(suppl245):S40–5.

    Article  CAS  Google Scholar 

  70. Molina R, Holdenrieder S, Auge JM, Schalhorn A, Hatz R, Stieber P. Diagnostic relevance of circulating biomarkers in patients with lung cancer. Cancer Biomark. 2010;6:163–78.

    Article  PubMed  Google Scholar 

  71. Holdenrieder S, Nagel D, Stieber P. Estimation of prognosis by circulating biomarkers in patients with non-small cell lung cancer. Cancer Biomark. 2010;6:179–90.

    Article  PubMed  Google Scholar 

  72. Pujol J-L, Grenier J, Daurès J-P, Daver A, Pujol H, Michel F-B. Serum fragment of cytokeratin subunit 19 measured by CYFRA 21-1 immunoradiometric assay as a marker of lung cancer. Cancer Res. 1993;53:61–6.

    CAS  PubMed  Google Scholar 

  73. Sanchez-Carbaho M, Espasa A, Chinchilla V, Herrero E, Megias J, Mira A, et al. New electrochemiluminescent immunoassay for the determination of CYFRA 21-1: Analytical evaluation and clinical diagnostic performance in urine samples of patients with bladder cancer. Clin Chem. 1999;45:1944–53.

    Google Scholar 

  74. Deng YF, Chen P, Lin YZ, Le JZ, Wu XL, Yu MQ, et al. Analytical and clinical evaluation of CYFRA 21-1 by electrochemiluminescent immunoassay in head and neck squamous cell carcinoma. J Laryngo Otol. 2003;117:190–4.

    Google Scholar 

  75. Vollmer RT, Govindan R, Graziano SL, Gamble G, Farst J, Kelley MJ, et al. Serum CYFRA 21-1 in advanced stage non-small cell lung cancer: An early measure of response. Clin Cancer Res. 2003;9:1728–33.

    CAS  PubMed  Google Scholar 

  76. Gruber C, Hatz R, Reinmiedl J, Nagel D, Stieber P. CEA, CYFRA 21-1, NSE, and ProGRP in the diagnosis of lung cancer: a multivariate approach. J Lab Med. 2008;32:361–71.

    CAS  Google Scholar 

  77. Wang R, Wang G, Zhang N, Liu Y. Clinical evaluation and cost-effectiveness analysis of serum tumor markers in lung cancer. Biomed Res Int. 2013;2013:195692.

    PubMed  PubMed Central  Google Scholar 

  78. Yoon JH, Han KH, Kim E-K, Moon HJ, Kim MJ, Suh YJ, et al. Fine-needle aspirates CYFRA 21-1 is a useful tumor marker for detecting axillary lymph node metastasis in breast cancer patients. PLoS One. 2013;8:e57248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Gjavotchanoff R. CYFRA 21-1 in urine: a diagnostic marker for endometriosis? Int J Women Health. 2015;7:205–11.

    Article  CAS  Google Scholar 

  80. Korbakis D, Dimitromanolakis A, Prassas I, Davis GJ, Barber E, Reckamp KL, et al. Serum LAMC2 enhances the prognostic value of a multi-parametric panel in non-small cell lung cancer. Br J Cancer. 2015;113:484–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lumachi F, Lo Re G, Tozzoli R, D’Aurizio F, Falcomer F, Chiara GB, et al. Measurement of serum carcinoembryonic antigen, carbohydrate antigen 19-9, cytokeratin-19 fragment and matrix metalloproteinase-7 for detecting cholangiocarcinoma: A preliminary case-control study. Anticancer Res. 2014;34:6663–8.

    CAS  PubMed  Google Scholar 

  82. Patel JL, Erickson JA, Roberts WL, Grenache DG. Performance characteristics of an automated assay for the quantitation of CYFRA 21-1 in human serum. Clin Biochem. 2010;43:1449–52.

    Article  CAS  PubMed  Google Scholar 

  83. Falzarano R, Viggiani V, Michienzi S, Longo F, Tudini S, Frati L, et al. Evaluation of a CLEIA automated assay system for the detection of a panel of tumor markers. Tumor Biol. 2013;34:3093–100.

    Article  CAS  Google Scholar 

  84. He A, Liu T-C, Dong Z-N, Ren Z-Q, Hou J-Y, Li M, et al. A novel immunoassay for the quantization of CYGRA 21-1 in human serum. J Clin Lab Anal. 2013;27:277–83.

    Article  PubMed  Google Scholar 

  85. Doseeva V, Colpitts T, Gao G, Woodcock J, Knezevis W. Performance of a multiplexed dual analyte immunoassay for the early detection of non small-cell lung cancer. J Transl Med. 2015;13:55.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Chen Z, Liang R, Guo X, Deng Q, Li M, An T, et al. Simultaneous detection of cytokeratin-19 fragment and carcinoembryonic antigen in human sera via quantum dot-doped nanoparticles. Biosens Bioelectron. 2017;91:60–5.

    Article  CAS  PubMed  Google Scholar 

  87. Raphael SJ, McKeown-Eyssen G, Asa SL. High-molecular-weight cytokeratin 19 in the diagnosis of thyroid tumours. Mod Pathol. 1994;7:295–300.

    CAS  PubMed  Google Scholar 

  88. Giovanella L, Ceriani L, Ghelfo A, Maffioli M. Circulating cytokeratin 19 fragments in patients with benign nodules and carcinomas of the thyroid gland. Int J Biol Markers. 2008;23:54–7.

    Article  CAS  PubMed  Google Scholar 

  89. Giovanella L, Treglia G, Verburg FA, Salvatori M, Ceriani L. Serum cytokeratin 19 fragments: a dedifferentiation marker in advanced thyroid cancer. Eur J Endocrinol. 2012;167:793–7.

    Article  CAS  PubMed  Google Scholar 

  90. Isic T, Savin S, Cvejic D, Marecko I, Tatic S, Havelka M, Paunovic I. Serum Cyfra 21.1 and galectin-3 protein levels in relation to immunohistochemical cytokeratin 19 and galectin-3 expression in patients with thyroid tumors. J Cancer Res Clin Oncol. 2010;136:1805–12.

    Article  CAS  PubMed  Google Scholar 

  91. Dohmoto K, Hojo S, Fujita J, Yang Y, Ueda Y, Bandoh S, et al. The role of caspase 3 in producing cytokeratin 19 fragment (CYFRA21-1) in human lung cancer cell lines. Int J Cancer. 2001;91:468–73.

    Article  CAS  PubMed  Google Scholar 

  92. Kim HS, Chang I, Kim JY, Choi KM, Lee MS. Caspase-mediated p65 cleavage promotes TRAIL-induced apoptosis. Cancer Res. 2005;65:6111–9.

    Article  CAS  PubMed  Google Scholar 

  93. Wu F, Fujita J, Murota M, Li JQ, Ishida T, Nishioka M, et al. CYFRA 21-1 is released in TNF-alpha-induced apoptosis in the hepatocellular carcinoma cell line HuH-7. Int J Oncol. 2002;21:441–5.

    CAS  PubMed  Google Scholar 

  94. Bass MB, Sherman SI, Schlumberger MJ, Davis MT, Kivman L, Khoo HM, et al. Biomarkers as predictors of response to treatment with motesanib in patients with progressive advanced thyroid cancer. J Clin Endocrinol Metab. 2012;95:5018–27.

    Article  Google Scholar 

  95. Riesco-Eizaguirre G, Santisteban P. New insights in thyroid follicular cell biology and its impact in thyroid cancer therapy. Endocr Relat Canc. 2007;14:957–77.

    Article  CAS  Google Scholar 

  96. Rivera M, Ghossein RA, Schoder H, Gomez D, Larson SM, Tuttle RM. Histopathologic characterization of radioactive iodine-refractory fluorodeoxyglucose positron emission tomography-positive thyroid carcinoma. Cancer. 2008;113:48–56.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Giovanella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Giovanella, L., D’Aurizio, F., Tozzoli, R. (2018). Circulating Mucins and Cytokeratins in Aggressive Thyroid Cancers. In: Giovanella, L. (eds) Atlas of Thyroid and Neuroendocrine Tumor Markers. Springer, Cham. https://doi.org/10.1007/978-3-319-62506-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62506-5_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62505-8

  • Online ISBN: 978-3-319-62506-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics